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Sketching with minimizers

» Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w
and call it the “representative” of the window — or its minimizer.

Example forw =4 and k = 7.

ACGGTAGAACCGATTCAAATTCGAT..

ACGGTAGAAC
CGGTAGAACC
GGTAGAACCG
GTAGAACCGA
TAGAACCGAT
AGAACCGATT
GAACCGATTC
AACCGATTCA



Sketching with minimizers

» Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w
and call it the “representative” of the window — or its minimizer.

* We would like to sample the same minimizer from Example forw =4 and k = 7.
consecutive windows so that the set of distinct
minimizers forms a succinct sketch for S. ACGGTAGAACCGATTCAAATTCGAT...
* This reduces the memory footprint and comput. ACGGTAGAAC
time of countless applications in Bioinformatics: CGGTAGAACC
such as: GGTAGAACCG
- sequence comparison, G$ﬁgﬁﬁgggﬁ.r
- assembly. AGAACCGATT
- construction of compacted DBGs, GAACCGATTC

- seguence indexing, etc. AACCGATTCA



Sketching with minimizers

* Q. How do we compare different sampling algorithms?

A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of k-mers of .

The lower the density, the better!

e Since the “window guarantee” must be respected, we immediately have a lower bound of
1/w on the density of any sampling algorithm.



Example: the “folklore” minimizer

1: function MINIMIZER(W, w, k, Ok) Example forw =4 and k = 7.
2: min = T
N A ACGGTAGAACCGATTCAAATTCGAT..
4: for:=0;:<w;t=14+1do

’ . ACGGTAGAAC
6: if 0 < 0;pin then GGTAGAACCG
7 Omin — O GTAGAACCGA
] p=1i TAGAACCGAT
9: | return p AGAACCGATT

GAACCGATTC

AACCGATTCA

* We usually define the total order using a random
hash function (random minimizer).

* In this case, the density is 2/(w + 1): almost a
factor of 2 away from the lower bound for large w.



Introducing the mod-sampling algorithm

1: function MINIMIZER(W, w, k, Ok) 1: function MOD-SAMPLING(W, w, k,t, O;)
2: Omin = +00O 2: Omin = +0Q
3: p=20 3: z =10
4: fori:=0;i<w;7=1+1do 4 fori=0;i<w+k—-t;i=17+1do
5: 0 = Ok(Wli..i + k)) 5: 0=0,(Wli.i+t))
6: if 0 < opmin then 6: if 0 < 0,5, then
7 omm. =0 7. Omin = O
8: D=1 8: L =1
9: | return p 9 p = x mod w
10: | return p
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Introducing the mod-sampling algorithm

1: function MINIMIZER(W, w, k, Ok) 1: function MOD-SAMPLING(W, w, k,t, O;)
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Why does mod-sampling work well for large k?

=

e Assume w is fixed, f is small,
and kK — 0.




Why does mod-sampling work well for large k?

=

e Assume w is fixed, f is small,
and kK = 0.

* One caveat: as windows get infinitely
large as k — o0, then we should also
increase f to “avoid” duplicate r-mers.

» Setting t = O(log(?)) = o(?) gives

probability o(1/£) of having two E

identical --mers, where Z = w + k — 1.



mod-sampling Is optimal for large k

* We have a closed-form formula for the density of mod-sampling:

5t +2
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0(1/0)



mod-sampling Is optimal for large k

* We have a closed-form formula for the density of mod-sampling:

(—t

o(1/6) Z—m_o_) V—t = 1/w

5t +2
£—1+2

(we have t = 0(¢), hencealso —t —» oo as k > o0)



Density of mod-sampling by varying t

measured - computed == lower bound == random minimizer
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« Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.



Density of mod-sampling by varying t

measured - computed - = |lower bound = random minimizer
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« Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.

* Density is minimum for the choice t = k mod w — mod-minimizer !



Density by varying k

- random minimizer - miniception rot-minimizer - - lower bound
- decycling set based - double decycling set based
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« Example for w = 24.
 Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.



Density by varying k

- random minimizer -— miniception rot-minimizer - mod-minimizer
- - lower bound - decycling set based =— double decycling set based
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« Example for w = 24.
 Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.



And small k ?
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* The miniception: sample the closed syncmer with the smallest hash value in the window.



And small k ?

- random minimizer - miniception
= mod-minimizer - - |lower bound
— double decycling set based open-closed-syncmers
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* The miniception: sample the closed syncmer with the smallest hash value in the window.
* Daniel: “ If it works well with closed syncmers, why not trying with open syncmers ? ”



Improved lower bound for small k

density
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Bryce Kille
Rice University
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* Bryce and Ragnar independently proposed an improved lower bound, which shows that

the mod-minimizer is tight when k = 1 (mod w).



Conclusions

 We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter 7.

» Fort = k mod w, mod-sampling yields the mod-minimizer that is optimal for k — 0.

* Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by ~15%.

 C++ code: https://qgithub.com/jermp/minimizers

* Rust code: https://github.com/RagnarGrootKoerkamp/minimizers
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Conclusions

 We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter 7.

» Fort = k mod w, mod-sampling yields the mod-minimizer that is optimal for k — 0.

* Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by ~15%.

 C++ code: https://qgithub.com/jermp/minimizers

* Rust code: https://github.com/RagnarGrootKoerkamp/minimizers

Thank you for the attention!
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