The mod-minimizer: a simple and efficient

sampling algorithm for long k-mers

Giulio Ermanno Pibiri
Ca’ Foscari University of Venice

Oer

Joint work with

Ragnar Groot Koerkamp
ETH, Zurich

24-th WABI
Egham, UK, 2 September 2024

Sketching with minimizers

» Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w
and call it the “representative” of the window — or its minimizer.

Example forw =4 and k = 7.

ACGGTAGAACCGATTCAAATTCGAT..

ACGGTAGAAC
CGGTAGAACC
GGTAGAACCG
GTAGAACCGA
TAGAACCGAT
AGAACCGATT
GAACCGATTC
AACCGATTCA

Sketching with minimizers

» Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w
and call it the “representative” of the window — or its minimizer.

* We would like to sample the same minimizer from Example forw =4 and k = 7.
consecutive windows so that the set of distinct
minimizers forms a succinct sketch for S. ACGGTAGAACCGATTCAAATTCGAT...
* This reduces the memory footprint and comput. ACGGTAGAAC
time of countless applications in Bioinformatics: CGGTAGAACC
such as: GGTAGAACCG
- sequence comparison, G$ﬁgﬁﬁgggﬁ.r
- assembly. AGAACCGATT
- construction of compacted DBGs, GAACCGATTC

- seguence indexing, etc. AACCGATTCA

Sketching with minimizers

* Q. How do we compare different sampling algorithms?

A. We define the density of a sampling algorithm as the fraction between the number of
(distinct) minimizers and the total number of k-mers of .

The lower the density, the better!

e Since the “window guarantee” must be respected, we immediately have a lower bound of
1/w on the density of any sampling algorithm.

Example: the “folklore” minimizer

1: function MINIMIZER(W, w, k, Ok) Example forw =4 and k = 7.
2: min = T
N A ACGGTAGAACCGATTCAAATTCGAT..
4: for:=0;:<w;t=14+1do

’ . ACGGTAGAAC
6: if 0 < 0;pin then GGTAGAACCG
7 Omin — O GTAGAACCGA
] p=1i TAGAACCGAT
9: | return p AGAACCGATT

GAACCGATTC

AACCGATTCA

* We usually define the total order using a random
hash function (random minimizer).

* In this case, the density is 2/(w + 1): almost a
factor of 2 away from the lower bound for large w.

Introducing the mod-sampling algorithm

1: function MINIMIZER(W, w, k, Ok) 1: function MOD-SAMPLING(W, w, k,t, O;)
2: Omin = +00O 2: Omin = +0Q
3: p=20 3: z =10
4: fori:=0;i<w;7=1+1do 4 fori=0;i<w+k—-t;i=17+1do
5: 0 = Ok(Wli..i + k)) 5: 0=0,(Wli.i+t))
6: if 0 < opmin then 6: if 0 < 0,5, then
7 omm. =0 7. Omin = O
8: D=1 8: L =1
9: | return p 9 p = x mod w
10: | return p

Introducing the mod-sampling algorithm

1: function MINIMIZER(W, w, k, Ok) 1: function MOD-SAMPLING(W, w, k,t, O;)
2: Omin = +0QO 2: Omin = +0Q
3: p=20 3: z =0
4: fori1=0;1<w;i=1+1do 4: for1=0:<w+k—-t;2=14+1do
5: 0=0,(Wli.i+k)) 5. 0=0,(Wli.i+1t)) ~
6: if 0 < omin then \ 6: if 0 < 0;nin then
.. o take smallest /-mer,
: Omin = O 7 Orrin, = O
. take smallest k-mer man for some < k
8: p=1 8: L xz=1
9: | returnp 9- p =z mod w
10: | returnp

Introducing the mod-sampling algorithm

1: function MINIMIZER(W, w, k, Ok) 1: function MOD-SAMPLING(W, w, k,t, O;)
2: Omin = +0QO 2: Omin = +0Q
3: p=20 3: z =0
4: fori=0;i<w;i=14+1do 4: fori =01 <w+k—t;i=14+1do
5: 0=0,(Wli.i+k)) 5. 0=0,(Wli.i+1t)) ~
6: if 0 < omin then \ 6: if 0 < 0;nin then
.. o take smallest /-mer,
: Omin = O 7 Orrin, = O
. take smallest k-mer man for some < k
8: p=1 8: L Tz =1
9: | return p 9- p =z mod w
10: | returnp

Why does mod-sampling work well for large k?

=

e Assume w is fixed, f is small,
and kK — 0.

Why does mod-sampling work well for large k?

=

e Assume w is fixed, f is small,
and kK = 0.

* One caveat: as windows get infinitely
large as k — o0, then we should also
increase f to “avoid” duplicate r-mers.

» Setting t = O(log(?)) = o(?) gives

probability o(1/£) of having two E

identical --mers, where Z = w + k — 1.

mod-sampling Is optimal for large k

* We have a closed-form formula for the density of mod-sampling:

5t +2
£—1+2

0(1/0)

mod-sampling Is optimal for large k

* We have a closed-form formula for the density of mod-sampling:

(—t

o(1/6) Z—m_o_) V—t = 1/w

5t +2
£—1+2

(we have t = 0(¢), hencealso —t —» oo as k > o0)

Density of mod-sampling by varying t

measured - computed == lower bound == random minimizer

0.300
0.275
0.250
0.225

0.175 | N\
O
0.100

2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
t

density

« Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.

Density of mod-sampling by varying t

measured - computed - = |lower bound = random minimizer

0.300
0.275
0.250
0.225

0.150 -
0.125 |: --
0.100

2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
t

density

« Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters
with an alphabet size of 4.

* Density is minimum for the choice t = k mod w — mod-minimizer !

Density by varying k

- random minimizer - miniception rot-minimizer - - lower bound
- decycling set based - double decycling set based

0.085
0.081
0.076
0.072
0.067
0.063
0.058
0.054
0.049
0.045

3
0.040
5 15 25 35 45 55 65 75 85 95 105115125135145155165175185 195205215225 235245255265 275285295

k

density

« Example for w = 24.
 Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

Density by varying k

- random minimizer -— miniception rot-minimizer - mod-minimizer
- - lower bound - decycling set based =— double decycling set based
0.085
0.081 ‘omm
0.076 | °
0.072
0.067
0.063
0.058
0.054
0.049
0.045

L L L L L .
0.040
5 15 25 35 45 55 65 75 85 95 1056115125135145155165175185195205215225235245255265275285295

k

density

« Example for w = 24.
 Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

And small k ?

0.085
0.081
0.076
0.072
0.067
0.063
0.058
0.054
0.049
0.045
0.040

density

rot-minimizer - mod-minimizer

— double decycling set based

- random minimizer
- = |lower bound

-~ miniception
- decycling set based

5 15 25 35 45 55 65 75 85 95 1056115125135145155165175185195205215225235245255265275285295

k

* The miniception: sample the closed syncmer with the smallest hash value in the window.

And small k ?

- random minimizer - miniception
= mod-minimizer - - |lower bound
— double decycling set based open-closed-syncmers
0.085 I
0.081 | . .
0076 l ~ — Daniel Liu, UCLA
0.072 { V%
> 0.067
2 0.063
O
© 0.058
0.054
0.049
0.045
0040 L
5 15 25 35 45 55 65 75 85 95 105115125135145155165 175185195205 215225 235245255 265275285295
k

* The miniception: sample the closed syncmer with the smallest hash value in the window.
* Daniel: “ If it works well with closed syncmers, why not trying with open syncmers ? ”

Improved lower bound for small k

density

0.085
0.081
0.076
0.072
0.067
0.063
0.058
0.054
0.049
0.045
0.040

- random minimizer -~ miniception
— mod-minimizer — decycling set based : E
open-closed-syncmers - = Improved lower bound “ 1\ /J)

Bryce Kille
Rice University

s

“ o
o

[

A i
& 1 [i N

“a

\

a
= U B
. ~ . ~ %3 = = T = i
)

Va1 Y~
“ = ! ~ =~ I ~ - .

o]

b
l
: >
\ 0 % i) 3 S
' 1
I 2
g “

5 15 25 35 45 55 65 75 85 95 105115125135145155165 175185 195205215225 235245255 265275285295
k

* Bryce and Ragnar independently proposed an improved lower bound, which shows that

the mod-minimizer is tight when k = 1 (mod w).

Conclusions

 We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter 7.

» Fort = k mod w, mod-sampling yields the mod-minimizer that is optimal for k — 0.

* Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by ~15%.

 C++ code: https://qgithub.com/jermp/minimizers

* Rust code: https://github.com/RagnarGrootKoerkamp/minimizers

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers

Conclusions

 We introduced mod-sampling — a simple framework that gives new minimizer schemes
depending on the choice of a parameter 7.

» Fort = k mod w, mod-sampling yields the mod-minimizer that is optimal for k — 0.

* Replacing random minimizers with mod-minimizers in SSHash decreases index space
consistently by ~15%.

 C++ code: https://qgithub.com/jermp/minimizers

* Rust code: https://github.com/RagnarGrootKoerkamp/minimizers

Thank you for the attention!

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers

