The mod-minimizer: a simple and efficient sampling algorithm for long *k*-mers

Giulio Ermanno Pibiri

Ca' Foscari University of Venice

24-th WABI Egham, UK, 2 September 2024

Joint work with Ragnar Groot Koerkamp ETH, Zurich

Sketching with minimizers

and call it the "representative" of the window — or its *minimizer*.

• Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w

Example for w = 4 and k = 7.

ACGGTAGAACCGATTCAAATTCGAT...

ACGGTAGAAC **CGGTAGA**ACC GGTAGAACCG GTAGAACCGA TAG**AACCGAT** AGAACCGATT GAACCGATTC AACCGATTCA

Sketching with minimizers

- and call it the "representative" of the window or its *minimizer*.
- We would like to sample the **same minimizer** from consecutive windows so that the set of distinct **minimizers** forms a succinct sketch for S.
- This reduces the memory footprint and comput. time of countless applications in Bioinformatics: such as:
 - sequence comparison,
 - assembly,
 - construction of compacted DBGs,
 - sequence indexing, etc.

• Consider each window of w consecutive k-mers from a string S: sample one k-mer out of w

Example for w = 4 and k = 7. ACGGTAGAACCGATTCAAATTCGAT...

ACGGTAGAAC CGGTAGAACC **GGTAGAACCG GTAGAACCG**A TAG**AACCGAT** AGAACCGATT GAACCGATTC AACCGATTCA

Sketching with minimizers

Q. How do we compare different sampling algorithms?

(distinct) minimizers and the total number of k-mers of S.

The lower the density, the better!

• Since the "window guarantee" must be respected, we immediately have a lower bound of 1/w on the density of any sampling algorithm.

A. We define the *density* of a sampling algorithm as the fraction between the number of

Example: the "folklore" minimizer

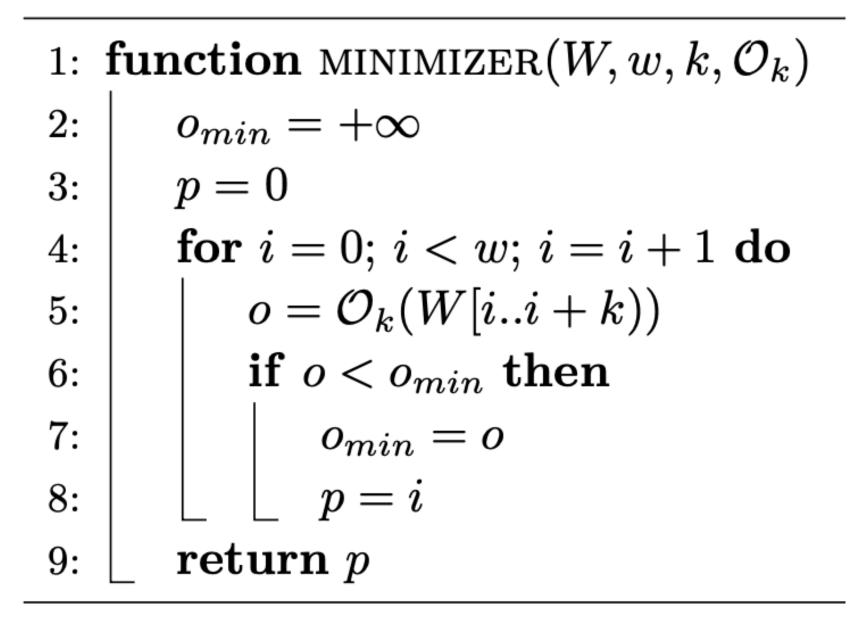
- 1: function MINIMIZER (W, w, k, \mathcal{O}_k) 2: $o_{min} = +\infty$ p = 03: for i = 0; i < w; i = i + 1 do 4: $o = \mathcal{O}_k(W[i..i+k))$ 5: if $o < o_{min}$ then 6: 7: $o_{min} = o$ p = i8: 9: return p
- We usually define the total order using a random hash function (random minimizer).
- In this case, the density is 2/(w + 1): almost a factor of 2 away from the lower bound for large w.

Example for w = 4 and k = 7.

ACGGTAGAACCGATTCAAATTCGAT...

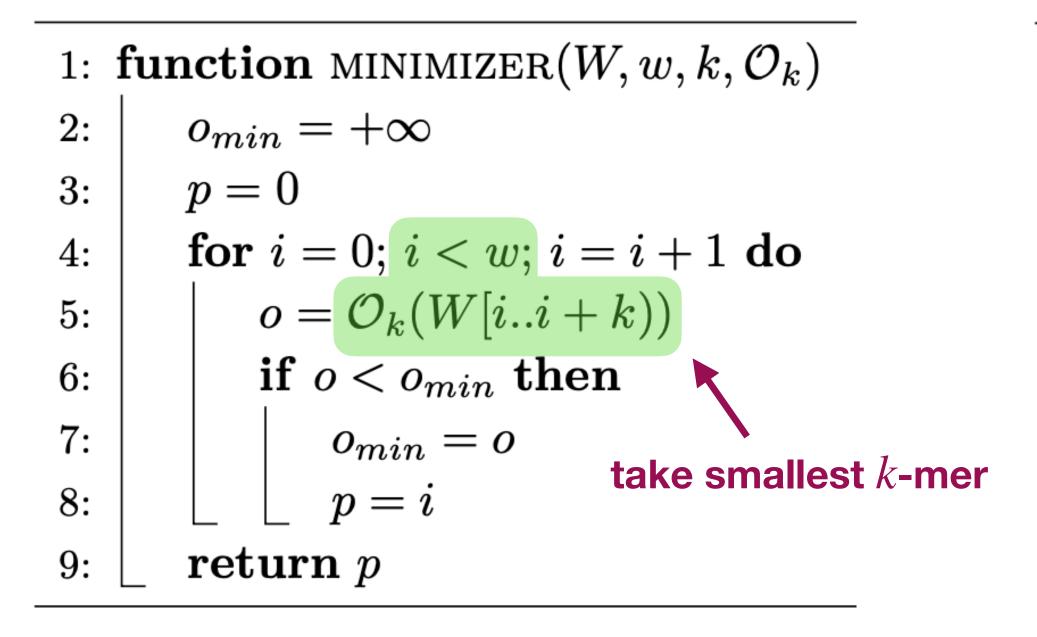
ACGGTAGAAC CGGTAGAACC GGTAGAACCG GTAGAACCGA TAG**AACCGAT** AGAACCGATT GAACCGATTC AACCGATTCA

Introducing the mod-sampling algorithm



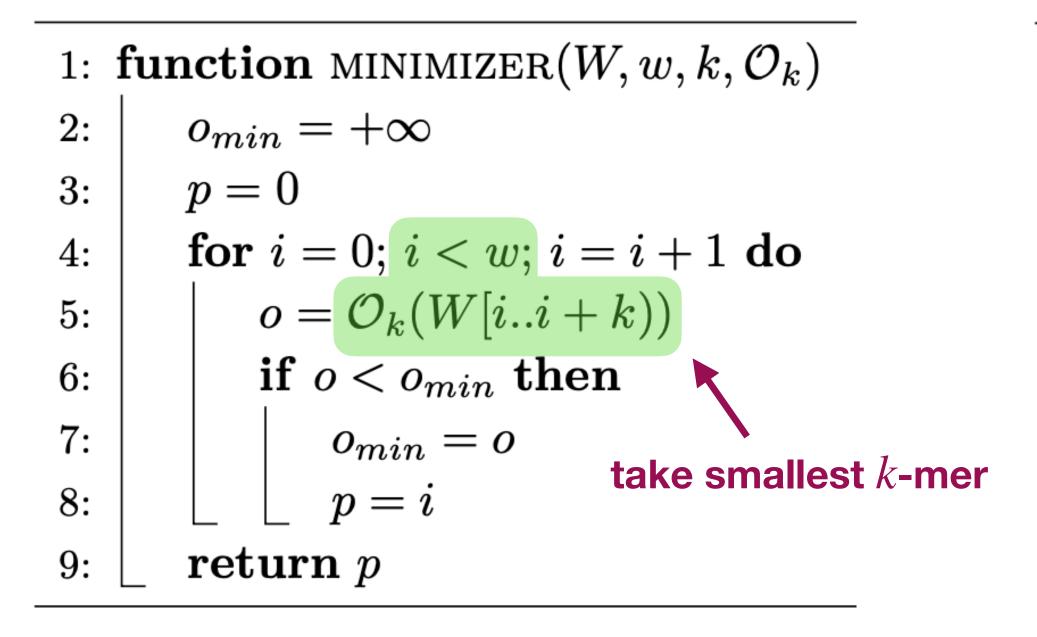
1: function MOD-SAMPLING $(W, w, k, t, \mathcal{O}_t)$	
2:	$o_{min} = +\infty$
3:	x = 0
4:	for $i = 0$; $i < w + k - t$; $i = i + 1$ do
5:	$o = \mathcal{O}_t(W[ii+t))$
6:	if $o < o_{min}$ then
7:	$ \begin{array}{ c c } & o_{min} = o \\ & x = i \end{array} $
8:	igsquare $igsquare$ $igsquare$ $x=i$
9:	$p = x \mod w$
10:	$_$ return p

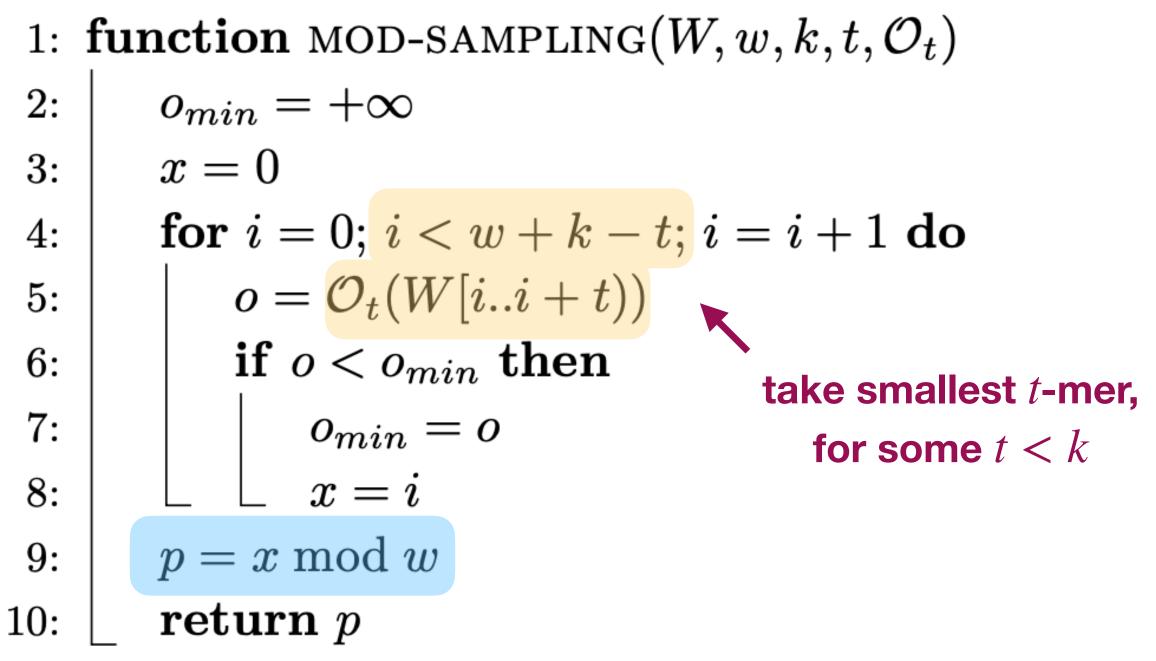
Introducing the mod-sampling algorithm



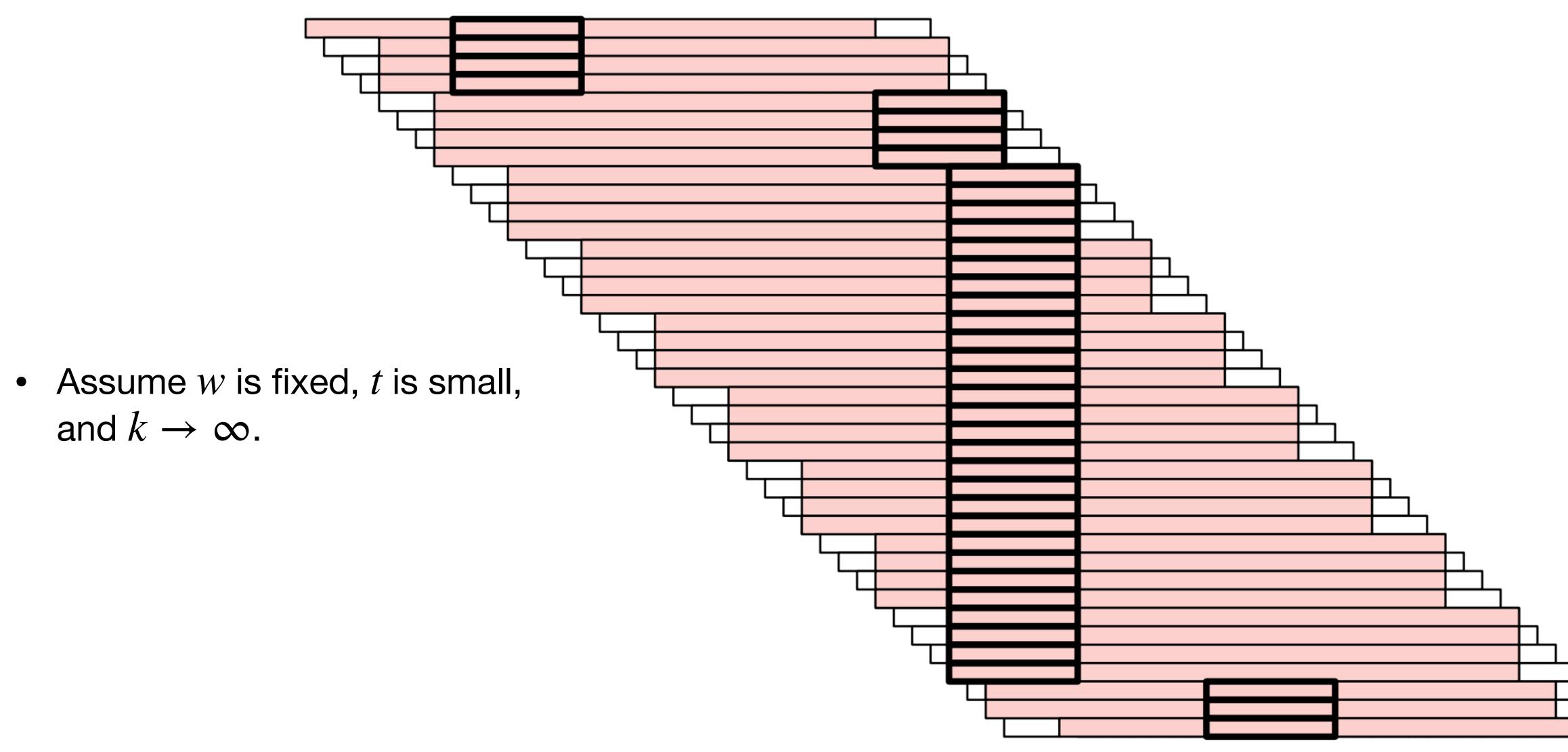
1: :	function MOD-SAMPLING $(W, w, k, t, \mathcal{O}_t)$
2:	$o_{min} = +\infty$
3:	x = 0
4:	for $i = 0$; $i < w + k - t$; $i = i + 1$ do
5:	$o = \mathcal{O}_t(W[ii+t))$
6:	if $o < o_{min}$ then take smallest <i>t</i> -mer,
7:	$\begin{bmatrix} o_{min} = o \\ x = i \end{bmatrix}$
8:	
9:	$p = x \mod w$
10:	$_$ return p

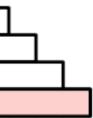
Introducing the mod-sampling algorithm





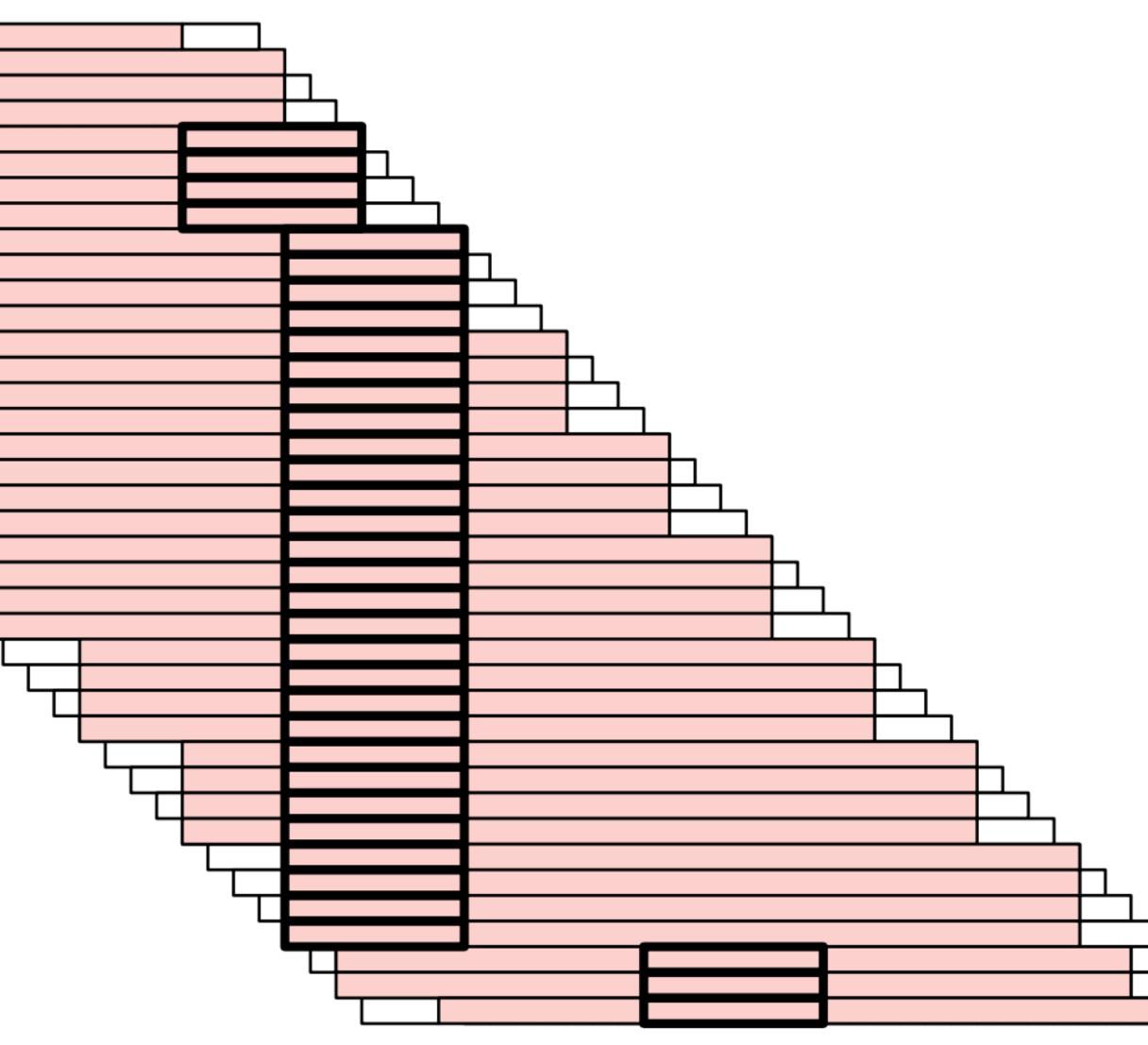
Why does mod-sampling work well for large k?

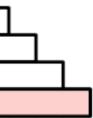




Why does mod-sampling work well for large k?

- Assume w is fixed, t is small, and $k \to \infty$.
- One caveat: as windows get infinitely large as $k \to \infty$, then we should also increase *t* to "avoid" duplicate *t*-mers.
- Setting $t = \Theta(\log(\ell)) = o(\ell)$ gives probability $o(1/\ell)$ of having two identical *t*-mers, where $\ell = w + k - 1$.





mod-sampling is optimal for large k

We have a closed-form formula for the density of mod-sampling: \bullet

$$\frac{\left\lfloor \frac{\ell-t}{w} \right\rfloor + 2}{\ell-t+2} + o(1/\ell)$$

mod-sampling is optimal for large k

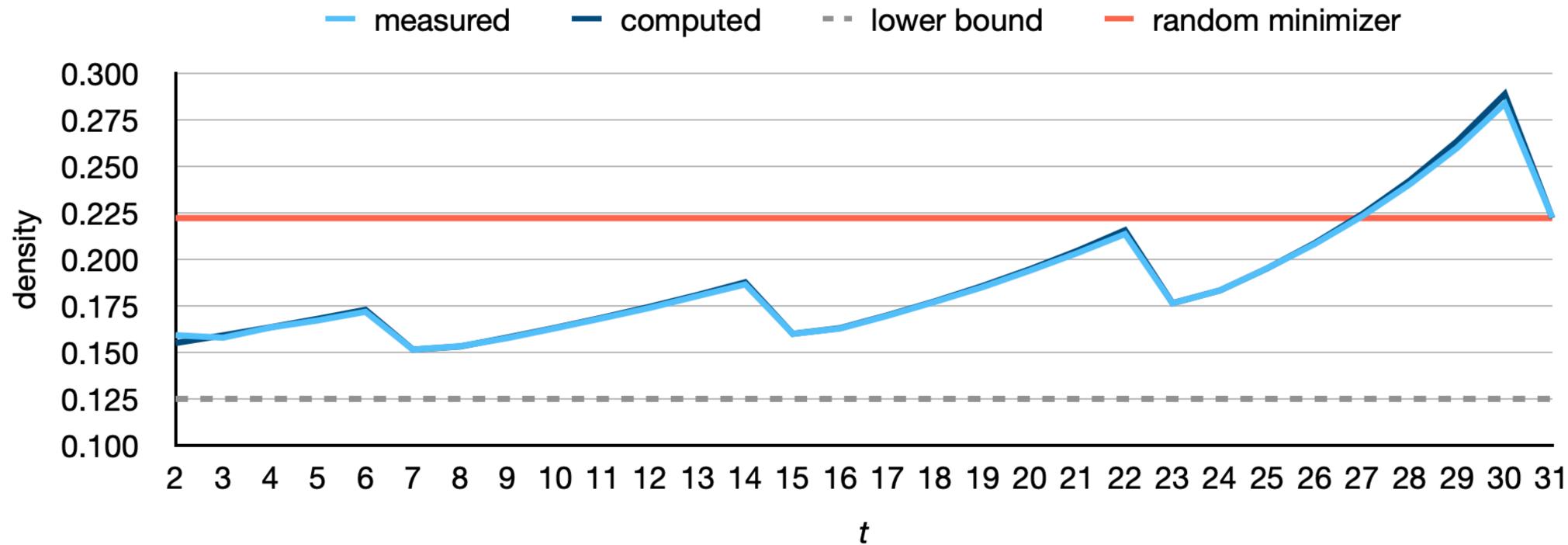
We have a closed-form formula for the density of mod-sampling: ullet

$$\frac{\lfloor \frac{\ell-t}{w} \rfloor + 2}{\ell-t+2} + o(1/\ell) \quad \xrightarrow{k \to \infty} \frac{\frac{\ell-t}{w}}{\ell-t}$$

$$\xrightarrow[k \to \infty]{\frac{\ell - t}{w}} = \frac{1/w}{\ell - t}$$

(we have $t = o(\ell)$, hence also $\ell - t \to \infty$ as $k \to \infty$)

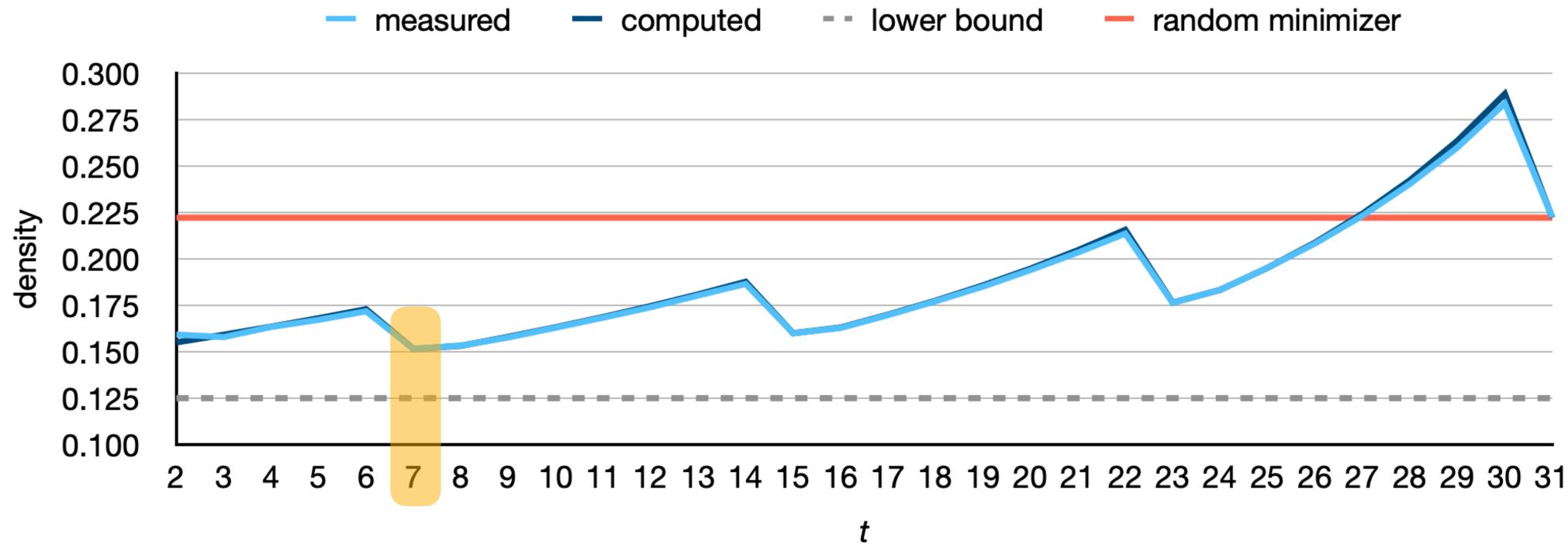
Density of mod-sampling by varying t



ulletwith an alphabet size of 4.

Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters

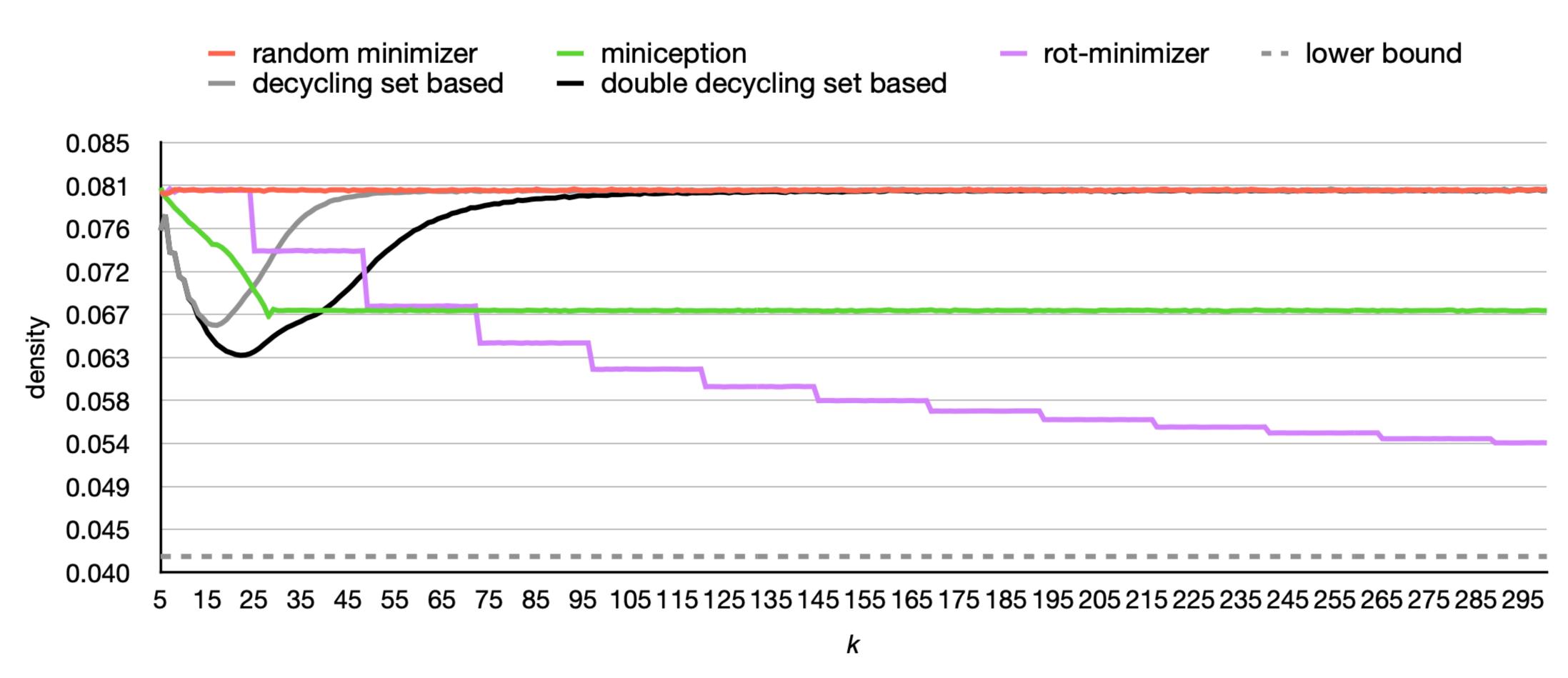
Density of mod-sampling by varying t



- with an alphabet size of 4.
- Density is minimum for the choice $t = k \mod w \rightarrow \text{mod-minimizer}$

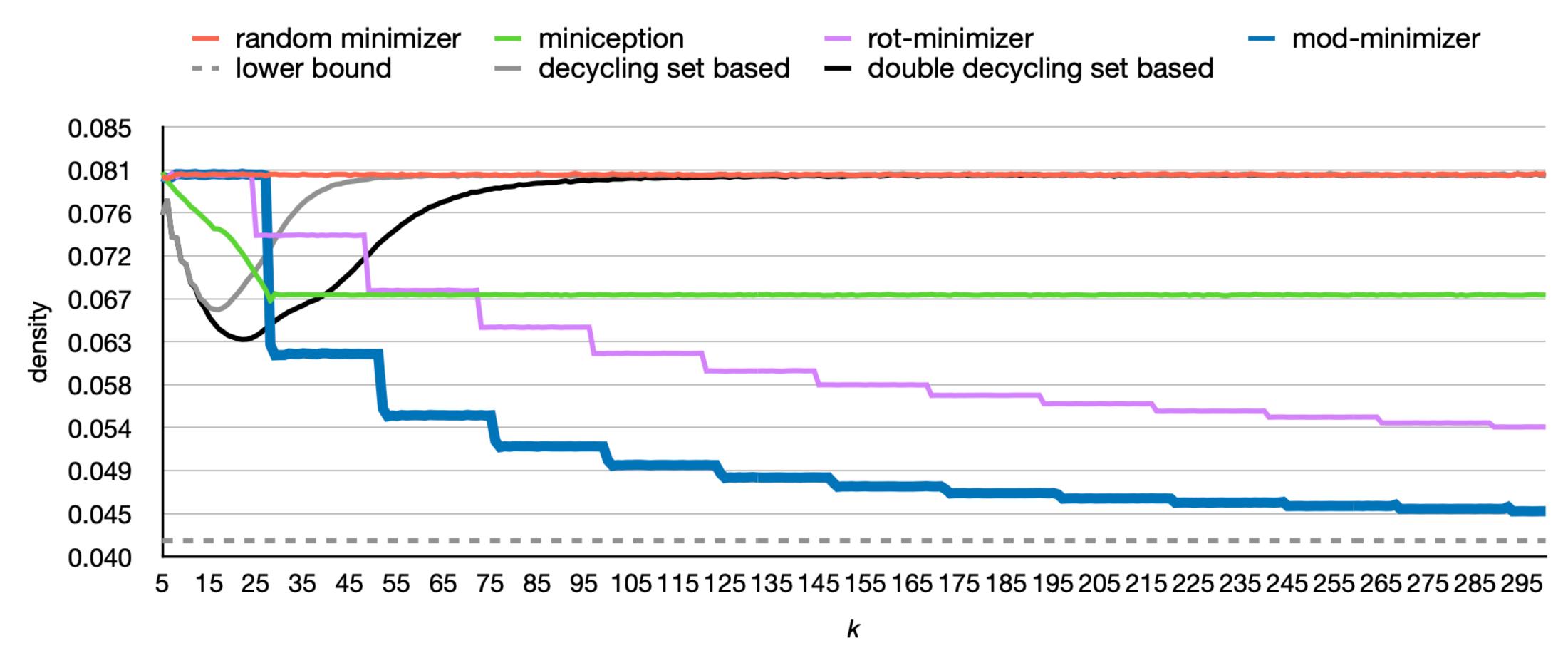
Example for k = 31 and w = 8. Measured over a string of 1 million i.i.d. random characters

Density by varying k



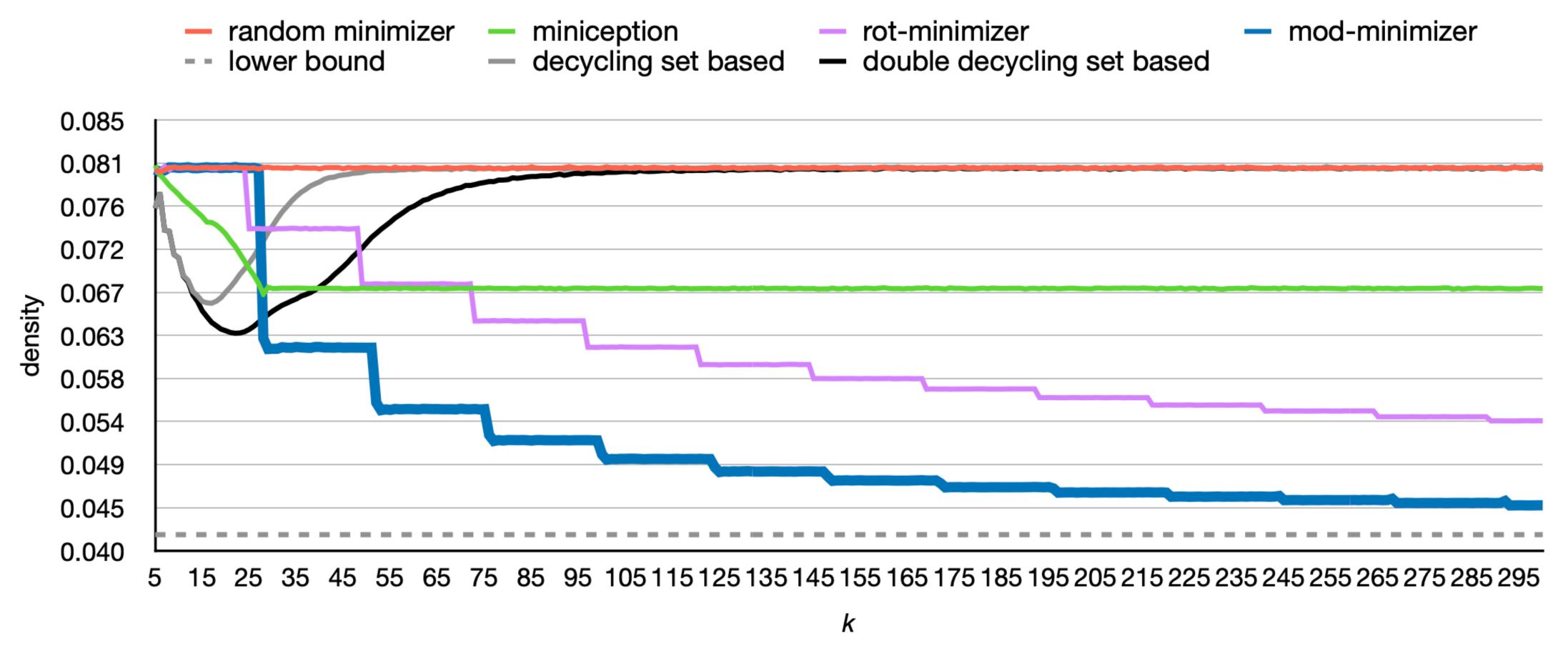
- Example for w = 24.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

Density by varying k



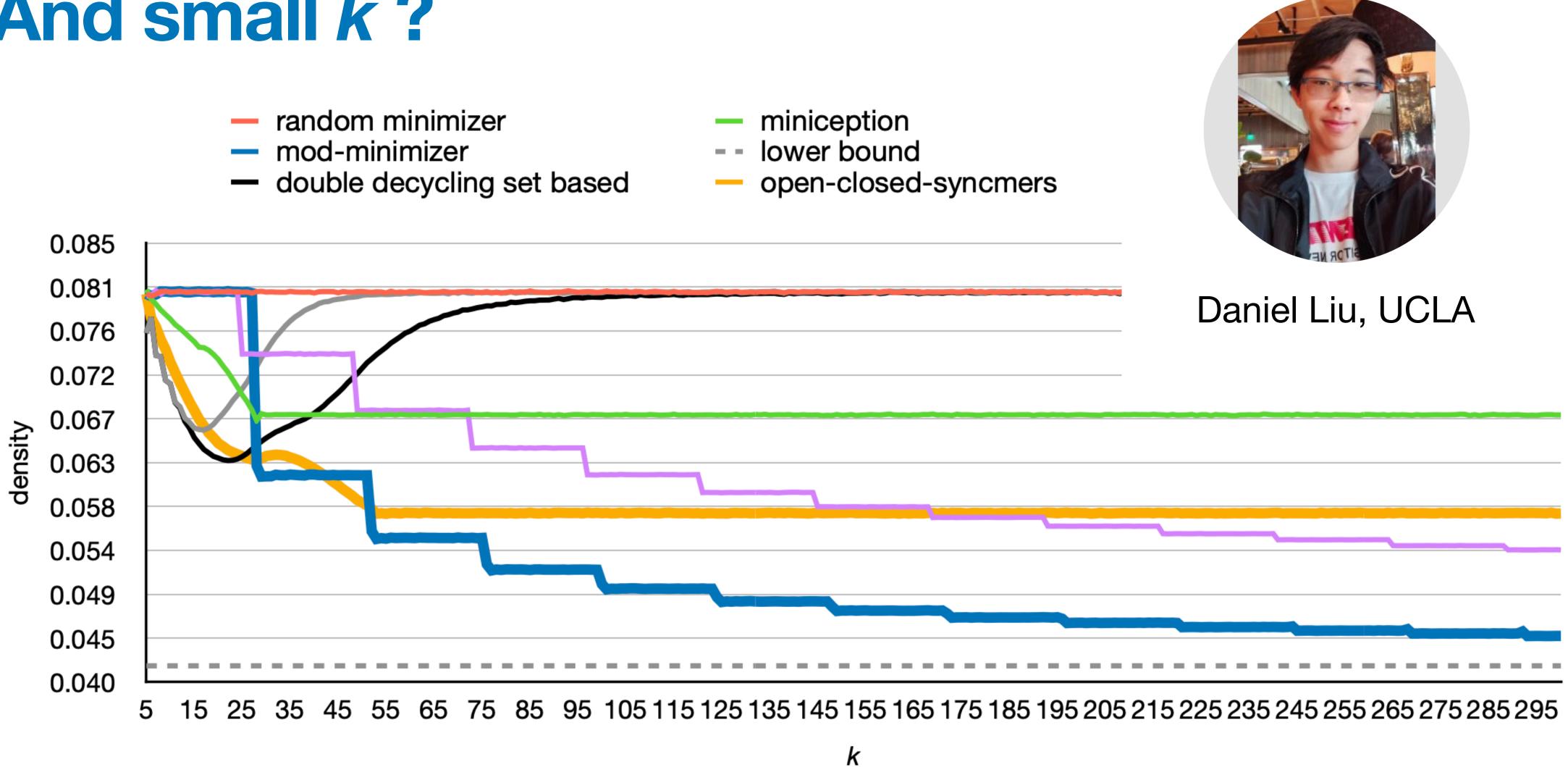
- Example for w = 24.
- Measured over a string of 10 million i.i.d. random characters with an alphabet size of 4.

And small k?



• The miniception: sample the **closed syncmer** with the smallest hash value in the window.

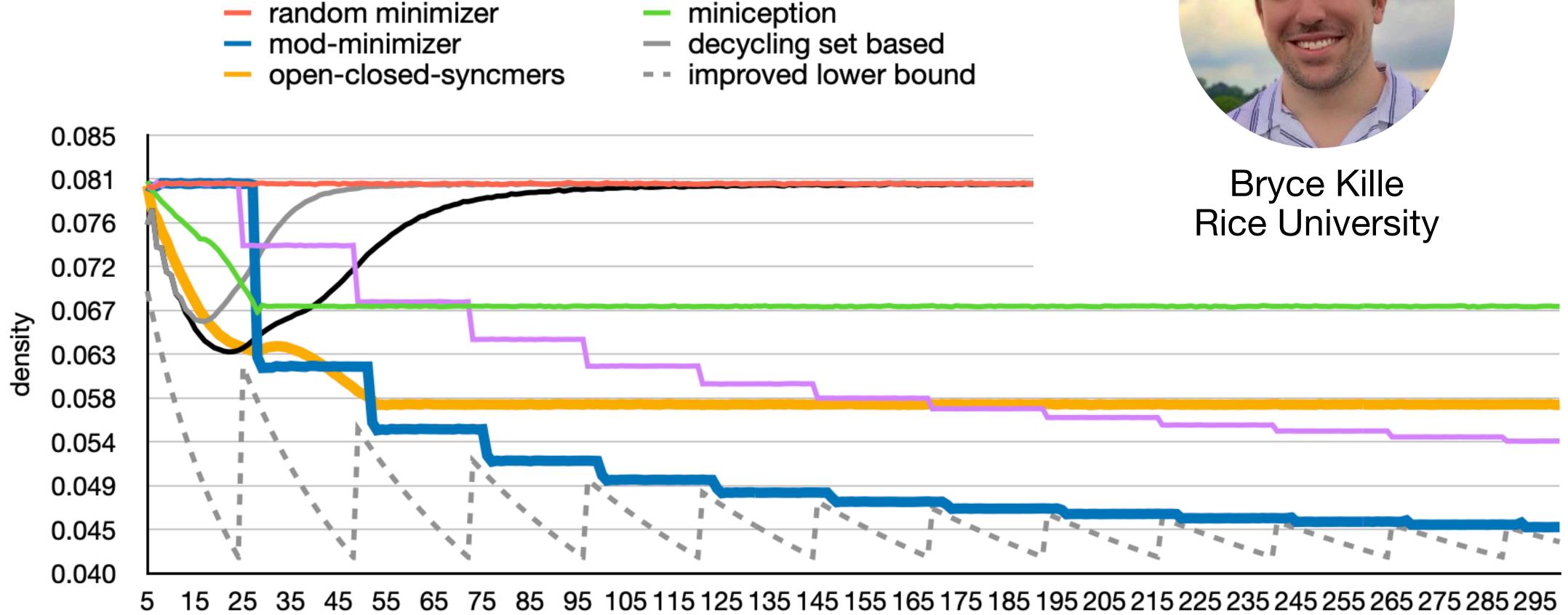
And small k?



- •

• The miniception: sample the **closed syncmer** with the smallest hash value in the window. Daniel: "If it works well with closed syncmers, why not trying with open syncmers?"

Improved lower bound for small k



Bryce and Ragnar independently proposed an improved lower bound, which shows that the mod-minimizer is tight when $k \equiv 1 \pmod{w}$.

k

Conclusions

- depending on the choice of a parameter t.
- For $t = k \mod w$, mod-sampling yields the mod-minimizer that is optimal for $k \to \infty$.
- consistently by \approx **15%**.
- C++ code: <u>https://github.com/jermp/minimizers</u>
- Rust code: <u>https://github.com/RagnarGrootKoerkamp/minimizers</u>

We introduced mod-sampling — a simple framework that gives new minimizer schemes

Replacing random minimizers with mod-minimizers in **SSHash** decreases index space

Conclusions

- depending on the choice of a parameter t.
- consistently by \approx **15%**.
- C++ code: <u>https://github.com/jermp/minimizers</u>
- Rust code: <u>https://github.com/RagnarGrootKoerkamp/minimizers</u>

We introduced mod-sampling - a simple framework that gives new minimizer schemes

For $t = k \mod w$, mod-sampling yields the mod-minimizer that is optimal for $k \to \infty$.

Replacing random minimizers with mod-minimizers in **SSHash** decreases index space

Thank you for the attention!