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Abstract

Motivation: Sequence alignment has been at the core of computational biology for half a century. Still, it is an open problem
to design a practical algorithm for exact alignment of a pair of related sequences in linear-like time (Medvedev, 2022b).
Methods: We solve exact global pairwise alignment with respect to edit distance by using the A* shortest path algorithm. In
order to efficiently align long sequences with high divergence, we extend the recently proposed seed heuristic (Ivanov et al.,
2022) with match chaining, gap costs, and inexact matches. We additionally integrate the novel match pruning technique
and diagonal transition (Ukkonen, 1985) to improve the A* search. We prove the correctness of our algorithm, implement it
in the A*PA aligner, and justify our extensions intuitively and empirically.
Results: On random sequences of divergence d=4% and length n, the empirical runtime of A*PA scales near-linearly with
length (best fit n1.06, n≤107 bp). A similar scaling remains up to d=12% (best fit n1.24, n≤107 bp). For n=107 bp and d=4%,
A*PA reaches >500× speedup compared to the leading exact aligners EDLIB and BIWFA. The performance of A*PA is
highly influenced by long gaps. On long (n>500kbp) ONT reads of a human sample it efficiently aligns sequences with
d<10%, leading to 3× median speedup compared to EDLIB and BIWFA. When the sequences come from different human
samples, A*PA performs 1.7× faster than EDLIB and BIWFA.
Availability: github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
Contact: ragnar.grootkoerkamp@inf.ethz.ch, pesho@inf.ethz.ch

1 Introduction
The problem of aligning one biological sequence to another is known as
global pairwise alignment (Navarro, 2001). Among others, it is applied
to genome assembly, read mapping, variant detection, and multiple
sequence alignment (Prjibelski et al., 2019). Despite the centrality and
age of pairwise alignment (Needleman and Wunsch, 1970), “a major open
problem is to implement an algorithm with linear-like empirical scaling
on inputs where the edit distance is linear in n” (Medvedev, 2022b).

Alignment accuracy affects subsequent analyses, so a common
goal is to find a shortest sequence of edit operations (single letter
insertions, deletions, and substitutions) that transforms one sequence
into the other. The length of such a sequence is known as Levenshtein
distance (Levenshtein, 1966) and edit distance. It has recently been proven
that edit distance can not be computed in strongly subquadratic time,
unless SETH is false (Backurs and Indyk, 2015). When the number of
sequencing errors is proportional to the length, existing exact aligners
scale quadratically both in the theoretical worst case and in practice. Given
the increasing amounts of biological data and increasing read lengths, this
is a computational bottleneck (Kucherov, 2019).

We solve the global alignment problem provably correct and
empirically fast by using A* on the alignment graph and building on
many existing techniques. Our implementation A*PA (A* Pairwise
Aligner) scales near-linear with length up to 107 bp long sequences with
divergence up to 12%. Additionally, it shows a speedup over other highly
optimized aligners when aligning long ONT reads.
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Fig. 1. Computed states per algorithm. Various optimal alignment algorithms
and their implementation are demonstrated on synthetic data (length n=500bp,
divergence d=16%). The colour indicates the order of computation from blue to red.
(a) Band-doubling (EDLIB), (b) Dijkstra, (c) Diagonal transition/DT (WFA), (d) DT
with divide-and-conquer/D&C (BIWFA), (e) A*PA with gap-chaining seed heuristic
(GCSH), match pruning, and DT (seed length k=5 and exact matches).

1.1 Overview of method

To align two sequences A and B globally with minimal cost, we use the
A* shortest path algorithm from the start to the end of the alignment graph,
as first suggested by Hadlock (1988b). A core part of the A* algorithm is
the heuristic function h(u) that provides a lower bound on the remaining
distance from the current vertex u. A good heuristic efficiently computes
an accurate estimate h, so suboptimal paths get penalized more and A*
prioritizes vertices on a shortest path, thus reaching the target quicker. In
this paper, we extend the seed heuristic by Ivanov et al. (2022) in several
ways to increase its accuracy for long and erroneous sequences.
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(a) Seed heuristic (b) Chaining seed heuristic (c) Gap-chaining seed heuristic (d) CSH + match pruning

Fig. 2. Demonstration of seed heuristic, chaining seed heuristic, gap-chaining seed heuristic, and match pruning. Sequence A on top is split into 5 seeds (horizontal
black segments ). Each seed is exactly matched in B (diagonal black segments ). The heuristic is evaluated at state u (blue circles ), based on the 4 remaining seeds.
The heuristic value is based on a maximal chain of matches (green columns for seeds with matches; red columns otherwise). Dashed lines denote chaining of matches.
(a) The seed heuristic hs(u)=1 is the number of remaining seeds that do not have matches (only s2). (b) The chaining seed heuristic hcs(u)=2 is the number of remaining
seeds without a match (s2 and s3) on a path going only down and to the right containing a maximal number of matches. (c) The gap-chaining seed heuristic hgcs(u)=4
is minimal cost of a chain, where the cost of joining two matches is the maximum of the number of not matched seeds and the gap cost between them. Red dashed lines
denote gap costs. (d) Once the start or end of a match is expanded (green circles ), the match is pruned (red cross ), and future computations of the heuristic ignore it.
s1 is removed from the maximum chain of matches starting at u so ĥcs(u) increases by 1.

Seed heuristic (SH). To define the seed heuristic hs, we split A into
short, non-overlapping substrings (seeds) of fixed length k (Fig. 2a). Since
the whole sequence A has to be aligned, each of the seeds also has to be
aligned somewhere in B. If a seed does not match anywhere in B without
mistakes, then at least 1 edit has to be made to align it. Thus, the seed
heuristic hs is the number of remaining seeds (contained in A≥i) that do
not match anywhere in B. The seed heuristic is a lower bound on the
distance between the remaining suffixes A≥i and B≥j . In order to compute
hsefficiently, we precompute all matches in B for all seeds from A. Where
Ivanov et al. (2022) uses crumbs to mark upcoming matches in the graph,
we do not need them due to the simpler structure of sequence-to-sequence
alignment.

Chaining (CSH). One drawback of the SH is that it may use matches
that do not lie together on a path from u to the end, as for example
the matches for s1 and s3 in Fig. 2a. In the chaining seed heuristic
hcs (Sec. 3.1), we enforce that the matches occur in the same order in B as
their corresponding seeds occur in A, i.e., the matches form a chain going
down and right (Fig. 2b). Now, the number of upcoming errors is at least
the minimal number of remaining seeds that cannot be aligned on a single
chain to the target. When there are many spurious matches (i.e. outside
the optimal alignment), chaining improves the accuracy of the heuristic,
thus reducing the number of states expanded by A*. To compute CSH
efficiently, we subtract the maximal number of matches in a chain starting
in the current state from the number of remaining seeds.

Gap costs (GCSH). The CSH penalizes the chaining of two matches
by the seed cost, the number of skipped seeds in between them. This
chaining may skip a different number of letters in A and B, in which
case the absolute difference between these lengths (gap cost) is a lower
bound on the length of a path between the two matches. The gap-chaining
seed heuristic hgcs (Fig. 2c) takes the maximum of the gap cost and the
seed cost, which significantly improves the accuracy of the heuristic for
sequences with long indels.

Inexact matches. To further improve the accuracy of the heuristic
for divergent sequences, we use inexact matches (Wu and Manber, 1992;
Marco-Sola et al., 2012). For each seed in A, our algorithm now finds all
its inexact matches in B with cost at most 1. The lack of a match of a seed
then implies that at least r=2 edits are needed to align it. This doubles the
potential of our heuristic to penalize errors.

Match pruning. In order to further improve the accuracy of our
heuristic, we apply the multiple-path pruning observation (Poole and
Mackworth, 2017): once a shortest path to a vertex u has been found,
no other path to u can be shorter. Since we search for a single shortest

path, we want to incrementally update our heuristic (similar to Real-Time
Adaptive A* (Koenig and Likhachev, 2006)) to penalize further paths
to u. We prove that once A* expands a state u which is at the start or
end of a match, indeed it has found a shortest path to u. Then we can
ignore (prune) such a match, thus penalizing other paths to u (Fig. 2d,
Sec. 3.2). Pruning increases the heuristic in states preceding the match,
thereby penalizing states preceding the “tip” of the A* search. This
reduces the number of expanded states, and leads to near-linear scaling
with sequence length (Fig. 1e).

Diagonal transition (DT). The diagonal transition algorithm only
visits so called farthest reaching states (Ukkonen, 1985; Myers, 1986)
along each diagonal and lies at the core of WFA (Marco-Sola et al.,
2021) (Fig. 1c). We introduce the diagonal transition optimization to the
A* algorithm that skips states known to be not farthest reaching. This is
independent of the A* heuristic and makes the exploration more “hollow”,
especially speeding up the quadratic behavior of A* in complex regions.

We present an algorithm to efficiently initialize and evaluate these
heuristics and optimizations (Sec. 3.3 and App. A), prove the correctness
of our methods (App. B), and evaluate and compare their performance to
other optimal aligners (Sec. 4 and App. C).

1.2 Related work

We first outline the algorithms behind the fastest exact global aligners:
DP-based band doubling (used by EDLIB) and diagonal transition (used
by BIWFA). Then, we outline methods that A*PA integrates.

Dynamic programming (DP). This classic approach to aligning two
sequences computes a table where each cell contains the edit distance
between a prefix of the first sequence and a prefix of the second by reusing
the solutions for shorter prefixes. This quadratic DP was introduced for
speech signals Vintsyuk (1968) and genetic sequences (Needleman and
Wunsch, 1970; Sankoff, 1972; Sellers, 1974; Wagner and Fischer, 1974).
The quadratic O(nm) runtime for sequences of lengths n and m allowed
for aligning of long sequences for the time but speeding it up has been
a central goal in later works. Implementations of this algorithm include
SEQAN (Reinert et al., 2017) and PARASAIL (Daily, 2016).

Band doubling and bit-parallelization. When the aligned sequences
are similar, the whole DP table does not need to be computed. One such
output-sensitive algorithm is the band doubling algorithm of Ukkonen
(1985) (Fig. 1a) which considers only states around the main diagonal
of the table, in a band with exponentially increasing width, leading to
O(ns) runtime, where s is the edit distance between the sequences. This
algorithm, combined with the bit-parallel optimization by Myers (1999)
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is implemented in EDLIB (Šošić and Šikić, 2017) with O(ns/w) runtime,
where w is the machine word size (nowadays 64).

Diagonal transition (DT). The diagonal transition algorithm (Ukkonen,
1985; Myers, 1986) exploits the observation that the edit distance does not
decrease along diagonals of the DP matrix. This allows for an equivalent
representation of the DP table based on farthest-reaching states for a
given edit distance along each diagonal. Diagonal transition has an O(ns)
worst-case runtime but only takes expected O(n+s2) time (Fig. 1c) for
random input sequences (Myers, 1986) (which is still quadratic for a fixed
divergence d = s/n). It has been extended to linear and affine costs
in the wavefront alignment (WFA) (Marco-Sola et al., 2021) in a way
similar to Gotoh (1982). Its memory usage has been improved to linear in
BIWFA (Marco-Sola et al., 2023) by combining it with the divide-and-
conquer approach of Hirschberg (1975), similar to Myers (1986) for unit
edit costs. Wu et al. (1990) and Papamichail and Papamichail (2009) apply
diagonal transition to align sequences of different lengths.

Contours. The longest common subsequence (LCS) problem is a
special case of edit distance, in which gaps are allowed but substitutions
are forbidden. Contours partition the state-space into regions with the
same remaining answer of the LCS subtask (Fig. 3). The contours can be
computed in log-linear time in the number of matching elements between
the two sequences which is practical for large alphabets (Hirschberg,
1977; Hunt and Szymanski, 1977).

Shortest paths and A*. An alignment that minimizes edit distance
corresponds to a shortest path in the alignment graph (Vintsyuk, 1968;
Ukkonen, 1985). Assuming non-negative edit costs, a shortest path can be
found using Dijkstra’s algorithm (Ukkonen, 1985) (Fig. 1b) or A* (Hart
et al., 1968). A* is an informed search algorithm which uses a task-
specific heuristic function to direct its search, and has previously been
applied to the alignment graph by Hadlock (1988a,b) and Spouge (1989,
1991). A* with an accurate heuristic may find a shortest path significantly
faster than an uninformed search such as Dijkstra’s algorithm.

A* heuristics. One widely used heuristic function is the gap cost that
counts the minimal number of indels needed to align the suffixes of two
sequences (Ukkonen, 1985; Myers and Miller, 1995; Spouge, 1989; Wu
et al., 1990; Papamichail and Papamichail, 2009; Šošić and Šikić, 2017).
Hadlock (1988b) introduces a heuristic based on character frequencies.

Seed-and-extend. Seed-and-extend is a commonly used paradigm
for approximately solving semi-global alignment by first matching
similar regions between sequences (seeding) to find matches (also
called anchors), followed by extending these matches (Kucherov, 2019).
Aligning long reads requires the additional step of chaining the seed
matches (seed-chain-extend). Seeds have also been used to solve the LCSk
generalization of LCS (Benson et al., 2014; Pavetić et al., 2017). Except
for the seed heuristic (Ivanov et al., 2022), most seeding approaches seek
for seeds with accurate long matches.

Seed heuristic. A* with seed heuristic is an exact algorithm
that was recently introduced for exact semi-global sequence-to-graph
alignment (Ivanov et al., 2022). In a precomputation step, the query
sequence is split into non-overlapping seeds each of which is matched
exactly to the reference. When A* explores a new state, the seed heuristic
is computed as the number of remaining seeds that cannot be matched in
the upcoming reference. A* with the seed heuristic enables provably-exact
alignment but runs reasonably-fast only when the long sequences are very
similar (≤ 0.3% divergence).

1.3 Contributions

We present an algorithm for exact global alignment that uses A* on the
alignment graph (Hart et al., 1968; Hadlock, 1988b), starting with the
seed heuristic of Ivanov et al. (2022).

We increase the accuracy of this heuristic in several novel ways:
seeds must match in order in the chaining seed heuristic, and gaps
between seeds are penalized in the gap-chaining seed heuristic. The
novel match pruning technique penalizes states “lagging behind” the
tip of the search and turns the otherwise quadratic algorithm into an
empirically near-linear algorithm in many cases. Inexact matches (Wu
and Manber, 1992; Marco-Sola et al., 2012) increase the divergence
of sequences that can be efficiently aligned. We additionally apply the
diagonal transition algorithm (Ukkonen, 1985; Myers, 1986), so that only
the small fraction of farthest-reaching states needs to be computed. We
prove the correctness of our methods, and apply contours (Hirschberg,
1977; Hunt and Szymanski, 1977) to efficiently initialize and evaluate the
heuristic. We implement our method in the novel aligner A*PA.

On uniform random synthetic data with 4% divergence, the runtime
of A*PA scales linearly with length up to 107 bp and is up to 500× faster
than EDLIB and BIWFA. On >500kbp long Oxford Nanopore (ONT)
reads of the human genome, A*PA is 3× faster in median than EDLIB

and BIWFA when only read errors are present, and 1.7× faster in median
when additionally genetic variation is present.

2 Preliminaries
This section provides definitions and notation that are used throughout the
paper. A summary of notation is included in App. D.

Sequences. The input sequences A = a0a1 . . . ai . . . an−1 and B =
b0b1 . . . bj . . . bm−1 are over an alphabet Σ with 4 letters. We refer to
substrings ai . . . ai′−1 as Ai...i′ , to prefixes a0 . . . ai−1 as A<i, and to
suffixes ai . . . an−1 as A≥i. The edit distance ed(A,B) is the minimum
number of insertions, deletions, and substitutions of single letters needed
to convert A into B. The divergence is the observed number of errors per
letter, d ∶= ed(A,B)/n, whereas the error rate e is the number of errors
per letter applied to a sequence.

Alignment graph. Let state ⟨i, j⟩ denote the subtask of aligning
the prefix A<i to the prefix B<j . The alignment graph (also called edit
graph) G(V,E) is a weighted directed graph with vertices V = {⟨i, j⟩ ∣
0 ≤ i ≤ n,0 ≤ j ≤m} corresponding to all states, and edges connecting
subtasks: edge ⟨i, j⟩→ ⟨i+1, j+1⟩ has cost 0 if ai = bj (match) and
1 otherwise (substitution), and edges ⟨i, j⟩→ ⟨i+1, j⟩ (deletion) and
⟨i, j⟩→ ⟨i, j+1⟩ (insertion) have cost 1. We denote the starting state
⟨0,0⟩ by vs, the target state ⟨n,m⟩ by vt, and the distance between states
u and v by d(u, v). For brevity we write f⟨i, j⟩ instead of f(⟨i, j⟩).

Paths and alignments. A path π from ⟨i, j⟩ to ⟨i′, j′⟩ in the
alignment graph G corresponds to a (pairwise) alignment of the
substrings Ai...i′ and Bj...j′ with cost cpath(π). A shortest path π∗

from vs to vt corresponds to an optimal alignment, thus cpath(π∗) =
d(vs, vt) = ed(A,B). We write g∗(u) ∶= d(vs, u) for the distance from
the start to u and h∗(u) ∶= d(u, vt) for the distance from u to the target.

Seeds and matches. We split the sequence A into a set of consecutive
non-overlapping substrings (seeds) S = {s0, s1, s2, . . . , s⌊n/k⌋−1}, such
that each seed sl=Alk...lk+k has length k. After aligning the first
i letters of A, our heuristics will only depend on the remaining seeds
S≥i ∶= {sl ∈ S ∣ lk ≥ i} contained in the suffix A≥i. We denote the
set of seeds between u=⟨i, j⟩ and v=⟨i′, j′⟩ by Su...v = Si...i′ =
{sl ∈ S ∣ i ≤ lk, lk + k ≤ i′} and an alignment of s to a subsequence of
B by πs. The alignments of seed s with sufficiently low cost (Sec. 3.1)
form the setMs of matches.

Dijkstra and A*. Dijkstra’s algorithm (Dijkstra, 1959) finds a
shortest path from vs to vt by expanding (generating all successors)
vertices in order of increasing distance g∗(u) from the start. Each vertex to
be expanded is chosen from a set of open vertices. The A* algorithm (Hart
et al., 1968, 1972; Pearl, 1984), instead directs the search towards a target
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by expanding vertices in order of increasing f(u) ∶= g(u) + h(u), where
h(u) is a heuristic function that estimates the distance h∗(u) to the end
and g(u) is the shortest length of a path from vs to u found so far. A
heuristic is admissible if it is a lower bound on the remaining distance,
h(u) ≤ h∗(u), which guarantees that A* has found a shortest path as
soon as it expands vt. Heuristic h1 dominates (is more accurate than)
another heuristic h2 when h1(u) ≥ h2(u) for all vertices u. A dominant
heuristic will usually, but not always (Holte, 2010), expand less vertices.
Note that Dijkstra’s algorithm is equivalent to A* using a heuristic that is
always 0, and that both algorithms require non-negative edge costs. Our
variant of the A* algorithm is provided in App. A.1.

Chains. A state u = ⟨i, j⟩ ∈ V precedes a state v = ⟨i′, j′⟩ ∈ V ,
denoted u ⪯ v, when i ≤ i′ and j ≤ j′. Similarly, a match m precedes a
match m′, denoted m ⪯m′, when the end of m precedes the start of m′.
This makes the set of matches a partially ordered set. A state u precedes a
match m, denoted u ⪯m, when it precedes the start of the match. A chain
of matches is a (possibly empty) sequence of matches m1 ⪯ ⋅ ⋅ ⋅ ⪯ml.

Gap cost. The number of indels to align substrings Ai...i′ and
Bj...j′ is at least their difference in length: cgap(⟨i, j⟩, ⟨i′, j′⟩) ∶=
∣(i′−i)−(j′−j)∣. For u ⪯ v ⪯ w, the gap cost satisfies the triangle
inequality cgap(u,w) ≤ cgap(u, v) + cgap(v,w).

Contours. To efficiently calculate maximal chains of matches,
contours are used. Given a set of matches M, S(u) is the number of
matches in the longest chain u ⪯ m1 ⪯ . . . , starting at u. The function
S⟨i, j⟩ is non-increasing in both i and j. Contours are the boundaries
between regions of states with S(u) = ℓ and S(u) < ℓ (Fig. 3). Note
that contour ℓ is completely determined by the set of matches m ∈M for
which S(start(m)) = ℓ (Hirschberg, 1977). Hunt and Szymanski (1977)
give an algorithm to efficiently compute S whenM is the set of single-
letter matches between A and B, and Deorowicz and Grabowski (2014)
give an algorithm whenM is the set of exact k-mer matches.

3 Methods
We formally define the general chaining seed heuristic (Sec. 3.1) that
encompases inexact matches, chaining, and gap costs (Fig. 2). Next, we
introduce the match pruning (Sec. 3.2) improvement and integrate our
A* algorithm with the diagonal-transition optimization (App. A.2). We
present a practical algorithm (Sec. 3.3), implementation (App. A.3) and
proofs of correctness (App. B).

3.1 General chaining seed heuristic

We introduce three heuristics for A* that estimate the edit distance
between a pair of suffixes. Each heuristic is an instance of a general
chaining seed heuristic. After splitting the first sequence into seeds S,
and finding all matches M in the second sequence, any shortest path
to the target can be partitioned into a chain of matches and connections
between the matches. Thus, the cost of a path is the sum of match costs cm
and chaining costs γ. Our simplest seed heuristic ignores the position
in B where seeds match and counts the number of seeds that were not
matched (γ=cseed). To efficiently handle more errors, we allow seeds to
be matched inexactly, require the matches in a path to be ordered (CSH),
and include the gap-cost in the chaining cost γ=max(cgap, cseed) to
penalize indels between matches (GCSH).

Inexact matches. We generalize the notion of exact matches to
inexact matches. We fix a threshold cost r (0<r≤k) called the seed
potential and define the set of matchesMs as all alignments m of seed
s with match cost cm(m) < r. The inequality is strict so that Ms = ∅
implies that aligning the seed will incur cost at least r. LetM = ⋃sMs

denote the set of all matches. With r=1 we allow only exact matches,

while with r=2 we allow both exact and inexact matches with one edit.
We do not consider higher r in this paper. For notational convenience, we
define mω ∉M to be a match from vt to vt of cost 0.

Potential of a heuristic. We call the maximal value the heuristic can
take in a state its potential P . The potential of our heuristics in state ⟨i, j⟩
is the sum of seed potentials r over all seeds after i: P ⟨i, j⟩ ∶= r ⋅ ∣S≥i∣.

Chaining matches. Each heuristic depends on a partial order on
states that limits how matches can be chained. We write u ⪯p v for
the partial order implied by a function p: p(u) ⪯ p(v). A ⪯p-chain
is a sequence of matches m1 ⪯p ⋅ ⋅ ⋅ ⪯p ml that precede each other:
end(mi) ⪯p start(mi+1) for 1 ≤ i < l. To chain matches according
only to their i-coordinate, SH is defined using ⪯i-chains, while CSH and
GCSH are defined using ⪯ that compares both i and j.

Chaining cost. The chaining cost γ is a lower bound on the path cost
between two consecutive matches: from the end state u of a match, to the
start v of the next match.

For SH and CSH, the seed cost is r for each seed that is not matched:
cseed(u, v) ∶= r ⋅ ∣Su...v ∣. When u ⪯i v and v is not in the interior of a
seed, then cseed(u, v) = P (u) − P (v).

For GCSH, we also include the gap cost cgap(⟨i, j⟩, ⟨i′, j′⟩) ∶=
∣(i′−i)−(j′−j)∣ which is the minimal number of indels needed to correct
for the difference in length between the substrings Ai...i′ and Bj...j′

between two consecutive matches (Sec. 2). Combining the seed cost and
the chaining cost, we obtain the gap-seed cost cgs =max(cseed, cgap),
which is capable of penalizing long indels and we use for GCSH. Note that
γ=cseed+cgap would not give an admissible heuristic since indels could
be counted twice, in both cseed and cgap.

For conciseness, we also define γ, cseed, cgap, and cgs

between matches γ(m,m′) ∶= γ(end(m), start(m′)), from a state to
a match γ(u,m′) ∶= γ(u, start(m′)), and from a match to a state
γ(m,u) = γ(end(m), u).

General chaining seed heuristic. We now define the general
chaining seed heuristic that we use to instantiate SH, CSH and GCSH.

Definition 1 (General chaining seed heuristic). Given a set of matches
M, partial order ⪯p, and chaining cost γ, the general chaining seed
heuristic hMp,γ(u) is the minimal sum of match costs and chaining costs
over all ⪯p-chains (indexing extends to m0 ∶= u and ml+1 ∶=mω):

hMp,γ(u) ∶= min
u⪯pm1⪯p ⋅⋅⋅⪯pml⪯pvt

mi∈M

∑
0≤i≤l

[γ(mi,mi+1) + cm(mi+1)].

Heuristic Order Chaining cost γ

hs(u) Seed heuristic (SH) ⪯i cseed
hcs(u) Chaining seed h. (CSH) ⪯ cseed
hgcs(u) Gap-chaining seed h. (GCSH) ⪯ max(cgap, cseed)

Table 1. Definitions of our heuristic functions. SH orders the
matches by i and uses only the seed cost. CSH orders the matches
by both i and j. GCSH additionally exploits the gap cost.

We instantiate our heuristics according to Table 1. Our admissibility
proofs (App. B.1) are based on cm and γ being lower bounds on disjoint
parts of the remaining path. Since the more complex hgcs dominates the
other heuristics it usually expand fewer states.

Theorem 1. The seed heuristic hs, the chaining seed heuristic hcs,
and the gap-chaining seed heuristic hgcs are admissible. Furthermore,
hMs (u) ≤ hMcs (u) ≤ hMgcs(u) for all states u.
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We are now ready to instantiate A* with our admissible heuristics but
we will first improve them and show how to compute them efficiently.

3.2 Match pruning

In order to reduce the number of states expanded by the A* algorithm,
we apply the multiple-path pruning observation: once a shortest path to a
state has been found, no other path to this state could possibly improve the
global shortest path (Poole and Mackworth, 2017). As soon as A* expands
the start or end of a match, we prune it, so that the heuristic in preceding
states no longer benefits from the match, and they get deprioritized by A*.
We define pruned variants of all our heuristics that ignore pruned matches:

Definition 2 (Pruning heuristic). Let E be the set of expanded states
during the A* search, and let M/E be the set of matches that were not
pruned, i.e. those matches not starting or ending in an expanded state. We
say that ĥ ∶= hM/E is a pruning heuristic version of h.

The hat over the heuristic function (ĥ) denotes the implicit dependency
on the progress of the A*, where at each step a different hM/E is used.
Our modified A* algorithm (App. A.1) works for pruning heuristics by
ensuring that the f -value of a state is up-to-date before expanding it, and
otherwise reorders it in the priority queue. Even though match pruning
violates the admissibility of our heuristics for some vertices, we prove
that A* is sill guaranteed to find a shortest path (App. B.2). To this end, we
show that our pruning heuristics are weakly-admissible heuristics (Def. 7)
in the sense that they are admissible on at least one path from vs to vt.

Theorem 2. A* with a weakly-admissible heuristic finds a shortest path.

Theorem 3. The pruning heuristics ĥs, ĥcs, ĥgcs are weakly admissible.

Pruning will allow us to scale near-linearly with sequence length,
without sacrificing optimality of the resulting alignment.

3.3 Computing the heuristic

We present an algorithm to efficiently compute our heuristics (pseudocode
in App. A.4, worst-case asymptotic analysis in App. A.5). At a high level,
we rephrase the minimization of costs (over paths) to a maximization
of scores (over chains of matches). We initialize the heuristic by
precomputing all seeds, matches, potentials and a contours data structure
used to compute the maximum number of matches on a chain. During the
A* search, the heuristic is evaluated in all explored states, and the contours
are updated whenever a match gets pruned.

Scores. The score of a match m is score(m)∶=r− cm(m) and is
always positive. The score of a ⪯p-chain m1 ⪯p ⋅ ⋅ ⋅ ⪯p ml is the sum
of the scores of the matches in the chain. We define the chain score of a
match m as

Sp(m) ∶= max
m⪯pm1⪯p ⋅⋅⋅⪯pml⪯pvt

{ score(m) + ⋅ ⋅ ⋅ + score(ml)}. (1)

Since ⪯p is a partial order, Sp can be computed with base case
Sp(mω) = 0 and the recursion

Sp(m) = score(m) + max
m⪯pm′⪯vt

Sp(m′). (2)

We also define the chain score of a state u as the maximum chain score
over succeeding matches m: Sp(u) = maxu⪯pm⪯pvt Sp(m), so that
Eq. (2) can be rewritten as Sp(m) = score(m) + Sp(end(m)).

The following theorem allows us to rephrase the heuristic in terms of
potentials and scores for heuristics that use γ=cseed and respect the order
of the seeds, which is the case for hs and hcs (proof in App. B.3):

Theorem 4. hMp,cseed(u) = P (u)−Sp(u) for any partial order ⪯p that
is a refinement of ⪯i (i.e. u ⪯p v must imply u ⪯i v).

(a) SH (b) CSH (c) GCSH

(d) SH + pruning (e) CSH + pruning (f) GCSH + pruning

Fig. 3. Contours and layers of different heuristics after aligning (n=48, m=42,
r=1, k=3, edit distance 10). Exact matches are black diagonal segments ( ). The
background colour indicates Sp(u), the maximum number of matches on a ⪯p-
chain from u to the end starting, with Sp(u) = 0 in white. The thin black boundaries
of these regions are Contours. The states of layerLℓ precede contour ℓ. Expanded
states are green ( ), open states blue ( ), and pruned matches red ( ). Pruning
matches changes the contours and layers. GCSH ignores matches m⪯̸T vt.

Layers and contours. We compute hs and hcs efficiently using
contours. Let layer Lℓ be the set of states u with score Sp(u) ≥ ℓ,
so that Lℓ ⊆ Lℓ−1. The ℓth contour is the boundary of Lℓ (Fig. 3).
Layer Lℓ (ℓ > 0) contains exactly those states that precede a match m

with score ℓ ≤ Sp(m) < ℓ + r (Lemma 5 in App. B.3).
Computing Sp(u). This last observation inspires our algorithm for

computing chain scores. For each layer Lℓ, we store the set L[i] of
matches having score ℓ: L[ℓ] = {m ∈M ∣ Sp(m) = ℓ}. The score
Sp(u) is then the highest ℓ such that layer L[ℓ] contains a match m

reachable from u (u ⪯p m). From Lemma 5 we know that Sp(u) ≥ ℓ

if and only if one of the layers L[ℓ′] for ℓ′ ∈ [ℓ, ℓ + r) contains a match
preceded by u. We use this to compute Sp(u) using a binary search over
the layers ℓ. We initialize L[0]={mω} (mω is a fictive match at the target
vt), sort all matches inM by ⪯p, and process them in decreasing order
(from the target to the start). After computing Sp(end(m)), we add m to
layer Sp(m) = score(m) + Sp(end(m)). Matches that do not precede
the target (start(m) /⪯p mω) are ignored.

Pruning matches from L. When pruning matches starting or ending
in state u in layer ℓu = Sp(u), we remove all matches that start at u
from layers L[ℓu−r+1] to L[ℓu], and all matches starting in some v and
ending in u from layers L[ℓv−r+1] to L[ℓv].

Pruning a match may change Sp in layers above ℓu, so we update
them after each prune. We iterate over increasing ℓ starting at ℓu + 1 and
recompute ℓ′ ∶= Sp(m) ≤ ℓ for all matches m in L[ℓ]. If ℓ′ ≠ ℓ, we move
m from L[ℓ] to L[ℓ′]. We stop iterating when either r consecutive layers
were left unchanged, or when all matches in r − 1 + ℓ − ℓ′ consecutive
layers have shifted down by the same amount ℓ − ℓ′. In the former case,
no further scores can change, and in the latter case, Sp decreases by ℓ− ℓ′
for all matches with score ≥ ℓ. We remove the emptied layers L[ℓ′ + 1] to
L[ℓ] so that all higher layers shift down by ℓ − ℓ′.

SH. Due to the simple structure of the seed heuristic, we also simplify
its computation by only storing the start of each layer and the number of
matches in each layer, as opposed to the full set of matches.

GCSH. Thm. 4 does not apply to gap-chaining seed heuristic since it
uses chaining cost γ=max(cgap(u, v), cseed(u, v)) which is different
from cseed(u, v). It turns out that in this new setting it is never optimal
to chain two matches if the gap cost between them is higher than the seed
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Fig. 4. Runtime comparison on synthetic data TODO LABELS (a)(b) Log-log plots comparing variants of our heuristic, including the simplest (SH) and most
accurate (GCSH with DT), to EDLIB, BIWFA, and other algorithms (averaged over 106 to 107 total bp, seed length k=15). The slopes of the bottom (top) of the dark-grey
cones correspond to linear (quadratic) growth. SH without pruning is dotted, and variants with DT are solid. For d=12%, red dots show where the heuristic potential is less
than the edit distance. Missing data points are due to exceeding the 32GiB memory limit. (c) Runtime scaling with divergence (n=105, 106 total bp, k=15).

cost. Intuitively, it is better to miss a match than to incur additional gapcost
to include it. We capture this constraint by introducing a transformation
T such that u ⪯T v holds if and only if cseed(u, v) ≥ cgap(u, v), as
shown in App. B.4. Using an additional consistency constraint on the set
of matches we can compute hMgcs via ST as before.

Definition 3 (Consistent matches). A set of matchesM is consistent when
for each m ∈ M (from ⟨i, j⟩ to ⟨i′, j′⟩) with score(m)>1, for each
adjacent pair of existing states (⟨i, j±1⟩, ⟨i′, j′⟩) and (⟨i, j⟩, ⟨i′, j′±1⟩),
there is an adjacent match with corresponding start and end, and score at
least score(m)−1.

This condition means that for r=2, each exact match must be adjacent
to four (or less around the edges of the graph) inexact matches starting or
ending in the same state. Since we find all matches m with cm(m)<r,
our initial set of matches is consistent. To preserve consistency, we do not
prune matches if that would break the consistency ofM.

Definition 4 (Gap transformation). The partial order ⪯T on states is
induced by comparing both coordinates after the gap transformation

T ∶ ⟨i, j⟩↦ (i − j − P ⟨i, j⟩, j − i − P ⟨i, j⟩)

Theorem 5. Given a consistent set of matchesM, the gap-chaining seed
heuristic can be computed using scores in the transformed domain:

hMgcs(u) =
⎧⎪⎪⎨⎪⎪⎩

P (u) − ST (u) if u ⪯T vt,

cgap(u, vt) if u ⪯̸T vt.

Using the transformation of the match coordinates, we can now reduce
cgs to cseed and efficiently compute GCSH in any explored state.

4 Results
Our algorithm is implemented in the aligner A*PA1 in Rust. We
compare it with state of the art exact aligners on synthetic (Sec. 4.2) and
human (Sec. 4.3) data2 using PABENCH3. We justify our heuristics and
optimizations by comparing their scaling and performance (Sec. 4.4).

1 github.com/RagnarGrootKoerkamp/astar-pairwise-aligner (tag evals)
2 github.com/pairwise-alignment/pa-bench/releases/tag/datasets
3 github.com/pairwise-alignment/pa-bench (tag astarpa-evals)

4.1 Setup

Synthetic data. Our synthetic datasets are parameterized by sequence
length n, induced error rate e, and total number of basepairs N , resulting
in N/n sequence pairs. The first sequence in each pair is uniform-
random from Σn. The second is generated by sequentially applying ⌊e⋅n⌋
edit operations (insertions, deletions, and substitutions with equal 1/3
probability) to the first sequence. Introduced errors can cancel each other,
making the divergence d between the sequences less than e. Induced error
rates of 1%, 5%, 10%, and 15% correspond to divergences of 0.9%,
4.3%, 8.2%, and 11.7%, which we refer to as 1%, 4%, 8%, and 12%.

Human data. We use two datasets of ultra-long Oxford Nanopore
Technologies (ONT) reads of the human genome: one without and one
with genetic variation. All reads are 500–1100kbp long, with mean
divergence around 7%. The average length of the longest gap in the
alignment is 0.1kbp for ONT reads, and 2kbp for ONT reads with
genetic variation (detailed statistics in App. C.5). The reference genome
is CHM13 (v1.1) (Nurk et al., 2022). The reads used for each dataset are:

● ONT: 50 reads sampled from those used to assemble CHM13.
● ONT with genetic variation: 48 reads from another human (Bowden

et al., 2019), as used in the BIWFA paper (Marco-Sola et al., 2023).

Algorithms and aligners. We compare SH, CSH, and GCSH (all
with pruning) as implemented in A*PA to the state-of-the-art exact
aligners BIWFA and EDLIB. We also compare to Dijkstra’s algorithm
and A* with previously introduced heuristics (gap cost and character
frequencies of Hadlock (1988b), and SH without pruning of Ivanov et al.
(2022)). We exclude SEQAN and PARASAIL since they are outperformed
by WFA and EDLIB (Marco-Sola et al., 2021; Šošić and Šikić, 2017). We
run all aligners with unit edit costs with traceback enabled.

A*PA parameters. Inexact matches (r=2) and short seeds (low k)
increase the accuracy of GCSH for divergent sequences, thus reducing
the number of expanded states. On the other hand, shorter seeds have
more matches, slowing down precomputation and contour updates. A
parameter grid search on synthetic data (App. C.1) shows that the runtime
is generally insensitive to k as long as k is high enough to avoid too many
spurious matches (k ≫ log4 n), and the potential is sufficiently larger
than edit distance (k ≪ r/d). For d=4%, exact matches lead to faster
runtimes, while d=12% requires r=2 and k < 2/d = 16.7. We fix k = 15
throughout the evaluations since this is a good choice for both synthetic
and human data.

Execution. We use PABENCH on Arch Linux on an Intel Core

i7-10750H processor with 64GB of memory and 6 cores, without

https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner/releases/tag/evals
https://github.com/pairwise-alignment/pa-bench/releases/tag/datasets
https://github.com/pairwise-alignment/pa-bench
https://github.com/pairwise-alignment/pa-bench/releases/tag/astarpa-evals
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Fig. 5. Runtime on long human reads. Each dot is an alignment without (left) or with (right) genetic variation. Runtime is capped at 100 s. Boxplots show the three
quartiles, and red dots show where the edit distance is larger than the heuristic potential. The median runtime of A*PA (GCSH + DT, k=15, r=2) is 3× (left) and 1.7× (right)
faster than EDLIB and BIWFA.

hyper-threading, frequency boost, and CPU power saving features. We
fix the CPU frequency to 2.6GHz, limit the memory usage to 32GiB,
and run 1 single-threaded job at a time with niceness −20.

Measurements. PABENCH first reads the dataset from disk and then
measures the wall-clock time and increase in memory usage of each
aligner. Plots and tables refer to the average alignment time per aligned
pair, and for A*PA include the time to build the heuristic. Best-fit
polynomials are calculated via a linear fit in the log-log domain using
the least squares method.

4.2 Scaling on synthetic data

Runtime scaling with length. We compare our A* heuristics with
EDLIB, BIWFA, and other heuristics in terms of runtime scaling with
n and d (Fig. 4, extended comparison in App. C.2). As theoretically
predicted, EDLIB and BIWFA scale quadratically. For small edit distance,
EDLIB is subquadratic due to the bit-parallel optimization. Dijkstra, A*
with the gap heuristic, character frequency heuristic (Hadlock, 1988b),
or original seed heuristic (Ivanov et al., 2022) all scale quadratically.
The empirical scaling of A*PA is subquadratic for d≤12 and n≤107,
making it the fastest aligner for long sequences (n>30kbp). For low
divergence (d≤4%) even the simplest SH scales near-linearly with
length (best fit n1.06 for n≤107). For high divergence (d=12%) we
need inexact matches, and the runtime of SH sharply degrades for long
sequences (n>106 bp) due to spurious matches. This is countered by
chaining the matches in CSH and GCSH, which expand linearly many
states (App. C.3). GCSH with DT is not exactly linear due to high memory
usage and state reordering (App. C.7 shows the time spent on parts of the
algorithm).

Runtime scaling with divergence. Fig. 4c shows that A*PA has near
constant runtime in d as long as the edit distance is sufficiently less than
the heuristic potential (i.e. d ≪ r/k). In this regime, A*PA is faster than
both EDLIB (linear in d) and BIWFA (quadratic in d). For 1 ≤ d ≤ 6%,
exact matches have less overhead than inexact matches, while BIWFA is
fastest for d ≤ 1%. A*PA becomes linear in d for d ≥ r/k (App. C.4).

Performance. A*PA with SH with DT is >500× faster than EDLIB

and BIWFA for d=4% and n=107 (Fig. 4a). For n=106 and d≤12%,
memory usage is less than 500MB for all heuristics (App. C.6).

4.3 Speedup on human data

We compare runtime (Fig. 5, App. C.7), and memory usage (App. C.6) on
human data. We configure A*PA to prune matches only when expanding
their start (not their end), leaving some matches on the optimal path
unpruned and speeding up contour updates. The runtime of A*PA (GCSH
with DT) on ONT reads is less than EDLIB and BIWFA in all quartiles,
with the median being >3× faster. However, the runtime of A*PA grows
rapidly when d≥10%, so we set a time limit of 100 seconds per read,

causing 6 alignments to time out. In real-world applications, the user
would either only get results for a subset of alignments, or could use
a different tool to align divergent sequences. With genetic variation,
A*PA is 1.7× faster than EDLIB and BIWFA in median. Low-divergence
alignments are faster than EDLIB, while high-divergence alignments
are slower (3 sequences with d≥10% time out) because of expanding
quadratically many states in complex regions (App. C.8). Since slow
alignments dominate the total runtime, EDLIB has a lower mean runtime.

4.4 Effect of pruning, inexact matches, chaining, and DT

We visualize our techniques on a complex alignment in App. C.10.
SH with pruning enables near-linear runtime. Figure 4a shows

that the addition of match pruning changes the quadratic runtime of
SH without pruning to near-linear, giving multiple orders of magnitude
speedup.

Inexact matches cope with higher divergence. Inexact matches
double the heuristic potential, thereby almost doubling the divergence
up to which A*PA is fast (Fig. 4c). This comes at the cost of a slower
precomputation to find all matches.

Chaining copes with spurious matches. While CSH improves on
SH for some very slow alignments (Fig. 5), more often the overhead of
computing contours makes it slower than SH.

Gap-chaining copes with indels. GCSH is significantly and
consistently faster than SH and CSH on human data, especially for slow
alignments (Fig. 5). GCSH has less overhead over SH than CSH, due to
filtering out matches m ⪯̸ vt.

Diagonal transition speeds up quadratic search. DT significantly
reduces the number of expanded states when the A* search is
quadratic (Fig. 4a and App. C.4). In particular, this results in a big speedup
when aligning genetic variation containing big indels (Fig. 5).

CSH, GCSH, and DT only have a small impact on the uniform
synthetic data, where usually either the SH is sufficiently accurate for the
entire alignment and runtime is near-linear (d ≪ r/k), or even GCSH
is not strong enough and runtime is quadratic (d ≫ r/k). On human
data however, containing longer indels and small regions of quadratic
search, the additional accuracy of GCSH and the reduced number of states
explored by DT provide a significant speedup (App. C.10).

5 Discussion
Seeds are necessary, matches are optional. The seed heuristic uses

the lack of matches to penalize alignments. Given the admissibility of
our heuristics, the more seeds without matches, the higher the penalty for
alignments and the easier it is to dismiss suboptimal ones. In the extreme,
not having any matches can be sufficient for finding an optimal alignment
in linear time (App. C.9).
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Modes: Near-linear and quadratic. The A* algorithm with a seed
heuristic has two modes of operation that we call near-linear and
quadratic. In the near-linear mode A*PA expands few vertices because
the heuristic successfully penalizes all edits between the sequences. When
the divergence is larger than what the heuristic can handle, every edit that
is not penalized by the heuristic increases the explored band, leading to a
quadratic exploration similar to Dijkstra.

Limitations.
1. Quadratic scaling. Complex data can trigger a quadratic (Dijkstra-

like) search, which nullifies the benefits of A* (Appendices C.8
and C.10). Regions with high divergence (d≤10%), such as high
error rate or long indels, exceed the heuristic potential to direct the
search and make the exploration quadratic. Low-complexity regions
(e.g. with repeats) result in a quadratic number of matches which also
take quadratic time.

2. Computational overhead of A*. Computing states sequentially (as in
EDLIB, BIWFA) is orders of magnitude faster than computing them
in random order (as in Dijkstra, A*). A*PA outperforms EDLIB and
BIWFA (Fig. 4a) when the sequences are long enough for the linear-
scaling to have an effect (n>30kbp), and there are enough errors
(d>1%) to trigger the quadratic behaviour of BIWFA.

Future work.
1. Performance. We are working on a DP-based version of A*PA that

applies computational volumes (Spouge, 1989, 1991), block-based
computations (Liu and Steinegger, 2023), and a SIMD version of
EDLIB’s bit-parallelization (Myers, 1999). This has already shown
10× additional speedup on the human data sets and is less sensitive to
the input parameters. Independently, the number of matches could be
reduced by using variable seed lengths and skipping seeds with many
matches.

2. Generalizations. Our chaining seed heuristic could be generalized to
non-unit and affine costs, and to semi-global alignment. Cost models
that better correspond to the data can speed up the alignment.

3. Relaxations. At the expense of optimality guarantees, inadmissible
heuristics could speed up A* considerably. Another possible
relaxation would be to validate the optimality of a given alignment
instead of computing it from scratch.

4. Analysis. The near-linear scaling with length of A* is not asymptotic
and requires a more thorough theoretical analysis (Medvedev, 2022a).
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A Pseudocode

A.1 A* algorithm for match pruning

We present our variant of A* (Hart et al., 1968) that supports match
pruning (Algorithm 1). All computed values of g are stored in a hash map,
and all open states are stored in a bucket queue of tuples (v, g(v), f(v))
ordered by increasing f . Line 14 prunes (removes) a match and thereby
increases some heuristic values before that match. As a result, some
f -values in the priority queue may become outdated. Line 11 solves this
problem by checking if the f -value of the state about to be expanded was
changed, and if so, line 12 pushes the updated state to the queue, and
proceeds by choosing a next best state. This way, we guarantee that the
expanded state has minimal updated f . To reconstruct the best alignment
we traceback from the target state using the hash map g (not shown).

A.2 Diagonal transition for A*

For a given distance g, the diagonal transition method only considers
the farthest-reaching (f.r.) state u=⟨i, j⟩ on each diagonal k=i−j at
distance g. We use Fgk ∶= i+j to indicate the antidiagonal4 of the farthest
reaching state. Let Xgk be the farthest state on diagonal k adjacent to
a state at distance g−1, which is then extended into Fgk by following
as many matches as possible. The edit distance is the lowest g such that
Fg,n−m ≥ n +m, and we have the recursion

Xgk ∶=max(Fg−1,k−1+1, Fg−1,k+2, Fg−1,k+1+1), (3)

Fgk = Xgk + LCP (A≥(Xgk+k)/2,B≥(Xgk−k)/2) . (4)

The base case is X0,0=0 with default value Fgk=−∞ for k>∣g∣, and LCP

is the length of the longest common prefix of two strings. Each edge in a
traceback path is either a match created by an extension (4), or a mismatch
starting in a f.r. state (3). We call such a path an f.r. path.

4 Previous works indicate the column i of u, but using the
antidiagonal i+j keeps the symmetry between insertions and deletions.

Algorithm 1 A* algorithm with match pruning.
Lines added for pruning (11, 12, and 14) are marked in bold.
1: Input: Sequences A and B and pruning heuristic h

2: Output: Edit distance between A and B

3: function ASTAR(A, B, h)
4: g(vs)← 0 ▷ Hashmap of distances; default +∞
5: q ← BucketQueue() ▷ Bucket queue of open states
6: q.push((vs, g=0, f=0))
7: repeat
8: (u, gu, fu)← q.pop() ▷ Pop u with minimal f
9: if gu > g(u) then

10: continue ▷ u was already expanded
11: else if fu < g(u) + h(u) then ▷ h(u) has increased
12: q.push((u, gu, g(u) + h(u))) ▷ Reorder u

13: else ▷ Expand u

14: Prune(u)
15: for successors v of u do
16: gv ← gu + d(u, v)
17: v ← Extend(v) ▷ Greedy matching within seed
18: if gv < g(v) then ▷ Open v

19: g(v)← gv

20: q.push((v, gv , gv + h(v)))
21: until vt is expanded
22: return g(vt)

Implementation. In Algorithm 2 we further modify the A* algorithm
to only consider f.r. paths. We replace the map g that tracks the best
distance by a map Fgk that tracks f.r. states (lines 4, 18, and 19). Instead
of g(u) decreasing over time, we now ensure that Fg,k increases over
time. Each time a state u is opened or expanded, the check whether g(u)
decreases is replaced by a check whether Fgk increases (line 9). This
causes the search to skip states that are known to not be farthest reaching.
The proof of correctness (Thm. 2) still applies.

Alternatively, it is also possible to implement A* directly in the
diagonal-transition state-space by pushing states Fgk to the priority
queue, but for simplicity we keep the similarity with the original A*.

A.3 Implementation notes

Here we list implementation details on performance and correctness.
Bucket queue. We use a hashmap to store all computed values of

g in the A* algorithm. Since the edit costs are bounded integers, we
implement the priority queue using a bucket queue (Hitchner, 1968; Dial,
1969; Bertsekas, 1991). Unlike heaps, this data structure has amortized
constant time push and pop operations since the value difference between
consecutive pop operations is bounded.

Greedy matching of letters. From a state ⟨i, j⟩ where ai = bj , it
is sufficient to only consider the matching edge to ⟨i+1, j+1⟩ (Allison,
1992; Ivanov et al., 2020), and ignore the insertion and deletion edges
to ⟨i, j+1⟩ and ⟨i+1, j⟩. During alignment, we greedily match as many
letters as possible within the current seed before inserting only the last
open state in the priority queue, but we do not cross seed boundaries in
order to not interfere with match pruning. This optimization is superseded
by the DT-optimization. We include greedily matched states in the
reported number of expanded states.

Priority queue offset. Pruning the last remaining match in a layer
may cause an increase of the heuristic in all states preceding the start u
of the match. This invalidates f values in the priority queue and causes
reordering. We skip most of the update operations by storing a global

Algorithm 2 A*-DT algorithm with match pruning.
Lines changed for diagonal transition (4, 9, 18, and 19) are in bold.
1: Input: Sequences A, B and pruning heuristic h

2: Output: Edit distance between A and B

3: function ASTAR-DT(A, B, h)
4: F0,0 ← 0 ▷ Hashmap of f.r. point per g and k; default −∞
5: q ← BucketQueue() ▷ Bucket queue of open states
6: q.push((vs, g=0, f=0))
7: repeat
8: (u, gu, fu)← q.pop() ▷ Pop u with minimal f
9: if iu+ju < Fgu,iu−ju then

10: continue ▷ u is not farthest reaching
11: else if fu < g(u) + h(u) then ▷ h(u) has increased
12: q.push((u, gu, g(u) + h(u))) ▷ Reorder u

13: else ▷ Expand u

14: Prune(u)
15: for successors v of u do
16: gv ← gu + d(u, v)
17: v ← Extend(v) ▷ Greedy matching in seed
18: if iv+jv > Fgv,iv−jv then ▷ Open v

19: Fgv,iv−jv ← iv+jv
20: q.push((v, gv , gv + h(v)))
21: until vt is expanded
22: return g(vt)
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offset to the f -values in the priority queue, which we update when all
states in the priority queue precede u.

Split vector for layers. Pruning a match may trigger the removal of
one or more layers of matches in L, and the shifting down of higher layers.
To efficiently remove layers, we use a split vector data structure consisting
of two stacks. In the first stack we store the layers before the last deleted
layer, and in the second stack the remaining layers in reverse order. Before
deleting a layer, we move layers from the top of one of the stacks to the
top of the other, until the layer to be deleted is at the top of one of the
stacks. Removing layers in decreasing order of ℓ takes linear total time.

Binary search speedup. Instead of using binary search to determine
the layer/score Sp(u) (Algorithm 3), we first try a linear search around
either the score of the parent of u or a known previous score at u. This
linear search usually finds the correct layer in a few iterations, or otherwise
we fall back to binary search.

In practice, most pruning happens near the tip of the search, and
the number of layers between the start vs and an open state u rarely
changes. Thus, to account for changing scores, we store a hint of value
Sp(vs) − Sp(u) in a hashmap and start the search at Sp(vs) − hint.

Code correctness. Our implementation A*PA is written in Rust,
contains many assertions testing e.g. the correctness of our A* and
layers data structure implementation, and is tested for correctness and
performance on randomly-generated sequences. Correctness is checked
against simpler algorithms (Needleman-Wunsch) and other aligners
(EDLIB, BIWFA).

A.4 Computation of the heuristic

Algorithm 3 shows how the heuristic is initialized, how Sp(u) and h(u)
are computed, and how matches are pruned.

A.5 Worst-case runtime asymptotics

Our algorithms optimize for the average case performance. Nevertheless,
we discuss the worst-case time of each part of the algorithm. To analyze
the worst-case asymptotics of A*PA, let M = O(n2) be the number of
(inexact) matches, and let E = O(n2) be the number of expanded states.
Then the asymptotical runtime of our algorithm breaks down as:

1. Finding all matches takes O(n +M) time.
2. Building the contours datastructure takes O(M logM) time.
3. Each expanded state is pushed onto and popped from the priority

queue (O(1) using a bucket queue), looked up in a hashmap (O(1)),
and has its neighbours explored (O(1)), for O(E) total.

4. Evaluating the heuristic requires a binary search over contours, which
is bounded by O(n lgn), since we test at most lgn contours each
containing at most n matches. (This could be improved to O(log2 n)
by storing each contour as an ordered set, but it is not usually a
bottleneck.)

5. Pruning a match requires a dictionary lookup and change for
O(1). Updating contours after pruning requires iterating over higher
contours until no more changes are triggered. This could take O(M)
for each match that is pruned, leading to a naive upper bound of
O(M2).

6. Reordering states takes O(En), since the heuristic in each expanded
state can decrease at most n times.

7. The traceback requires O(n) time.

Taking this together, we obtain O(n+M logM+En lgn+M2+En).
When the number of matches M is Θ(n2), the updating of contours has
the worst upper bound and the asymptotics becomes O(n4). Whether this
upper bound can be reached in practice or whether a tigher bound exists

Algorithm 3 Computation of the heuristic.
1: Input: Sequences A and B

2: Output: Heuristic h

3: function INITIALIZEHEURISTIC(A, B, k)
4: S ← Non-overlapping k-mers of A ▷ Seeds
5: H ← Map of all k-mers (and k±1-mers for r = 2) of B
6: Ms ← ⋃s′ ∶ ed(s,s′)<r H[s′] ▷ Seed matches
7: M ← ⋃s∈SMs ▷ Matches
8: P (i)← r ⋅ ∣S≥i∣ for all i ∈ [0, ∣A∣] ▷ Potentials
9: L[0] = {mω} ▷ Layers

10: for m ∈M in decreasing order of ⪯p do
11: ℓ← score(m) + Sp(end(m))
12: if m ⪯p mω then ▷ If m precedes the target
13: L[ℓ].push(m)

14: function Sp(u)
15: function TEST(ℓ)
16: for ℓ′ ∈ [ℓ, ℓ + r) do
17: if u ⪯p m for some m ∈ L[ℓ′] then
18: return True

19: return False

20: return max{ℓ ∣ TEST(ℓ)} ▷ Binary search the highest ℓ

21: function hs(u) ▷ SH
22: return P (u) − Si(u)

23: function hcs(u) ▷ CSH
24: return P (u) − S⪯(u)

25: function hgcs(u) ▷ GCSH
26: return max(P (u) − ST (u), cgap(u, vt))

27: function PRUNE(u)
28: ℓu ← Sp(u)
29: for all m ∈M∶ start(m) = u or end(m) = u do
30: if h ≠ hgcs or M/{m} is consistent then
31: Remove m fromM
32: for ℓ ∈ [Sp(start(m)) − r + 1, Sp(start(m))] do
33: Remove m from L[ℓ] if present

34: for ℓ ∈ [ℓu + 1, Sp⟨0,0⟩] do
35: for all m ∈ L[ℓ] do
36: ℓ′ ← Sp(m)
37: if ℓ′ ≠ ℓ then
38: Move m from L[ℓ] to L[ℓ′]
39: if r consecutive layers unchanged then
40: return
41: if r−1+ℓ−ℓ′ consecutive layers shifted exactly ℓ−ℓ′ then
42: Remove empty layers L[ℓ′+1], . . . , L[ℓ]

▷ Shift higher layers down
43: return

needs further investigation. Even if the worst-case was Θ(n2), in practice
our algorithm only runs efficiently in regimes well below this bound.

App. C.1 discusses the effect of r and k on the number of expanded
states when aligning synthetic data, and App. C.4 discusses the effect of
the divergence d on the number of expanded states.
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B Proofs

B.1 Admissibility

Our heuristics are not consistent, but we show that a weaker variant holds
for states at the start of a seed.

Definition 5 (Start of seed). A state ⟨i, j⟩ is at the start of some seed
when i is a multiple of the seed length k, or when i = n.

Lemma 1 (Weak triangle inequality). For states u, v, and w with v and
w at the starts of some seeds, all γ ∈ {cseed, cgap, cgs} satisfy

γ(u, v) + γ(v,w) ≥ γ(u,w).

Proof. Both v and w are at the start of some seeds, so for γ = cseed we
have the equality cseed(u,w) = cseed(u, v) + cseed(v,w).

For γ = cgap,

cgap(⟨i, j⟩, ⟨i′, j′⟩) + cgap(⟨i′, j′⟩, ⟨i′′, j′′⟩)

= ∣(i′ − i) − (j′ − j)∣ + ∣(i′′ − i′) − (j′′ − j′)∣

≥ ∣(i′′ − i) − (j′′ − j)∣ = cgap(⟨i, j⟩, ⟨i′′, j′′⟩).

And lastly, for γ = cgs,

cgs(u, v) + cgs(v,w)

=max(cgap(u, v), cseed(u, v)) +max(cgap(v,w), cseed(v,w))

≥max(cgap(u, v) + cgap(v,w), cseed(u, v) + cseed(v,w))

≥max(cgap(u,w), cseed(u,w)) = cgs(u,w).

Lemma 2 (Weak consistency). Let h ∈ {hMs , hMcs , h
M
gcs} be a heuristic

with partial order ⪯p, and let u ⪯p v be states with v at the start of a
seed. When there is a shortest path π∗ from u to v such thatM contains
all matches of cost less than r on π∗, it holds that h(u) ≤ d(u, v)+h(v).

Proof. The path π∗ covers each seed in Su...v that must to be fully
aligned between u and v. Since the seeds do not overlap, their shortest
alignments π∗s in π∗ do not have overlapping edges. Let u ⪯ m1 ⪯p
⋅ ⋅ ⋅ ⪯p ml ⪯p v be the chain of matches mi ∈ M corresponding to
those π∗s of cost less than r (Fig. 6). Since the matches and the paths
between them are disjoint, cpath(π∗) is at least the cost of the matches
cm(mi+1) = d(start(mi+1), end(mi+1)) plus the cost to chain these
matches γ(end(mi), start(mi+1)) ≤ d(end(mi), start(mi+1)).
Putting this together:

γ(u,m1) + cm(m1) + ⋅ ⋅ ⋅ + cm(ml) + γ(ml, v)

≤ d(u, start(m1)) + d(start(m1), end(m1)) + ⋅ ⋅ ⋅ + d(end(ml), v)

≤ d(u, v).

Now let v ⪯p ml+1 ⪯p ⋅ ⋅ ⋅ ⪯p ml′ ⪯p vt be a chain of matches
minimizing h(v) (Def. 1) with w ∶= start(ml+1). This chain also
minimizes h(w) and thus h(v) = γ(v,w) + h(w). We can now bound
the cost of the joined chain from u to v and from w to the end and get our
result via γ(ml,w) ≤ γ(ml, v) + γ(v,w) (Lemma 1)

h(u) ≤ γ(u,m1) + ⋅ ⋅ ⋅ + γ(ml,ml+1) + cm(ml+1) + ⋅ ⋅ ⋅ + γ(ml′ , vt)

= γ(u,m1) + ⋅ ⋅ ⋅ + γ(ml,w) + h(w)

≤ γ(u,m1) + ⋅ ⋅ ⋅ + γ(ml, v) + γ(v,w) + (h(v) − γ(v,w))

≤ d(u, v) + h(v).

Fig. 6. Variables of the proof of Lemma 2.

Theorem 1. The seed heuristic hs, the chaining seed heuristic hcs,
and the gap-chaining seed heuristic hgcs are admissible. Furthermore,
hMs (u) ≤ hMcs (u) ≤ hMgcs(u) for all states u.

Proof. We will prove hMs (u)
(1)
≤ hMcs (u)

(2)
≤ hMgcs(u)

(3)
≤ h∗(u), which

implies the admissibility of all three heuristics.
(1) Note that u ⪯ v implies u ⪯i v and hence any ⪯-chain is also a ⪯i-

chain. A minimum over the superset of ⪯i-chains is at most the minimum
of the subset of ⪯-chains, and hence hMs = hM⪯i,cseed ≤ h

M
⪯,cseed = h

M
cs .

(2) The only difference between hMcs and hMgcs is that the former uses
cseed and the latter uses the gap-seed cost cgs ∶= max(cgap, cseed).
Since cseed ≤ cgs we have hMcs = hM⪯,cseed ≤ h

M
⪯,cgs = h

M
gcs.

(3) When M is the set of all matches with costs strictly less than r,
admissibility follows directly from Lemma 2 with v = vt via

hMgcs(u) ≤ d(u, vt) + hMgcs(vt) = d(u, vt) = h∗(u).

B.2 Match pruning

During the A* search, we continuously improve our heuristic using match
pruning. The pruning increases the value of our heuristics and breaks their
admissibility. Nevertheless, we prove in two steps that A* with match
pruning still finds a shortest path. First, we introduce the concept of a
weakly-admissible heuristic and show that A* using a weakly-admissible
heuristic finds a shortest path (Thm. 2). Then, we show that our pruning
heuristics are indeed weakly admissible (Thm. 3).

A* with a weakly-admissible heuristic finds a shortest path.

Definition 6 (Fixed vertex). A vertex u is fixed if it is expanded and A*
has found a shortest path to it, that is, g(u) = g∗(u).

A fixed vertex cannot be opened again (Algorithm 1, line 18), and
hence remains fixed.

Definition 7 (Weakly admissible). A heuristic ĥ is weakly admissible
if at any moment during the A* search there exists a shortest path π∗

from vs to vt in which all vertices u ∈ π∗ after its last fixed vertex n∗

satisfy ĥ(u) ≤ h∗(u).

To prove that A* finds a shortest path when used with a weakly-
admissible heuristic, we follow the structure of Hart et al. (1968). First we
restate their Lemma 1 in our notation with a slightly stronger conclusion
that follows directly from their proof.

Lemma 3 (Lemma 1 of Hart et al. (1968)). For any unfixed vertex n and
for any shortest path π∗ from vs to n, there exists an open vertex n′ on
π∗ with g(n′) = g∗(n′) such that π∗ does not contain fixed vertices after
n′.

Next, we prove that in each step the A* algorithm can proceed along a
shortest path to the target:

Corollary 1 (Generalization of Corollary to Lemma 1 of Hart et al.
(1968)). Suppose that ĥ is weakly admissible, and that A* has not
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terminated. Then, there exists an open vertex n′ on a shortest path from
vs to vt with f(n′) ≤ g∗(vt).

Proof. Let π∗ be the shortest path from vs to vt given by the weak
admissibility of ĥ (Def. 7). Since A* has not terminated, vt is not
fixed. Substitute n = vt in Lemma 3 to derive that there exists an open
vertex n′ on π∗ with g(n′) = g∗(n′). By definition of f we have
f(n′) = g(n′) + ĥ(n′). Since π∗ does not contain any fixed vertices
after n′, the weak admissibility of ĥ implies ĥ(n′) ≤ h∗(n′). Thus,
f(n′) = g(n′) + ĥ(n′) ≤ g∗(n′) + h∗(n′) = g∗(vt).

Theorem 2. A* with a weakly-admissible heuristic finds a shortest path.

Proof. The proof of Theorem 1 in Hart et al. (1968) applies, with the
remark that instead of an arbitrary shortest path, we use the specific path
π∗ given by the weak admissibility and the specific vertex n′ given by
Corollary 1.

Our heuristics are weakly admissible. A consistent heuristic finds
the correct distance to each vertex as soon as it is expanded. While our
heuristics are not consistent, this property is true for states at the starts of
seeds (when i is a multiple of the seed length k, or when i = n).

Lemma 4. For ĥ ∈ {ĥs, ĥcs, ĥgcs}, every state at the start of a seed
becomes fixed immediately when A* expands it.

Proof. We use a proof by contradiction: suppose that v is a state at the
start of some seed that is expanded but not fixed. In other words, f(v) is
minimal among all open states, but the shortest path π∗ from vs to v has
strictly smaller length g∗(v) < g(v).

Let n∗ be the last fixed state on π∗ before v, and let u ∈ π∗ be the
successor of n∗. State u is open because its predecessor n∗ is fixed and on
a shortest path to u. Let the chain of all matches of cost less than r on π∗

between u and v be u ⪯m1 ⪯ ⋅ ⋅ ⋅ ⪯ml ⪯ v. Since n∗ is the last fixed state
on π∗, none of these matches has been pruned, and they are all inM/E
as well. This means we can apply Lemma 2 to get h(u) ≤ d(u, v)+h(v),
so

f(u) = g(u) + h(u) = g∗(u) + h(u) π∗ is a shortest path

≤ g∗(u) + d(u, v) + h(v) shown above

= g∗(v) + h(v) π∗ is a shortest path

< g(v) + h(v) = f(v) by assumption.

This proves that f(u) < f(v), resulting in a contradiction with the
assumption that v is an open state with minimal f .

Theorem 3. The pruning heuristics ĥs, ĥcs, ĥgcs are weakly admissible.

Proof. Let π∗ be a shortest path from vs to vt. At any point during the
A* search, let n∗ be the farthest expanded state on π∗ that is at the start
of a seed. By Lemma 4, n∗ is fixed. By the choice of n∗, no states on π∗

after n∗ that are at the start of a seed are expanded, so no matches on
π∗ following n∗ are pruned. Now the proof of Thm. 1 applies to the part
of π∗ after n∗ without changes, implying that ĥ(u) ≤ h∗(u) for all u on
π∗ following n∗, for any ĥ ∈ {ĥs, ĥcs, ĥgcs}.

B.3 Computation of the (chaining) seed heuristic

Theorem 4. hMp,cseed(u) = P (u)−Sp(u) for any partial order ⪯p that
is a refinement of ⪯i (i.e. u ⪯p v must imply u ⪯i v).

Proof. For a chain of matches {mi} ⊆M, let si and ti be the start and
end states of mi. We translate the terms of our heuristic from costs to

potentials and match scores (Sec. 3.3):

cseed(mi,mi+1) + cm(mi+1)

= (P (ti) − P (si+1)) + (P (si+1) − P (ti+1) − score(mi+1))

= P (ti) − P (ti+1) − score(mi+1).

The heuristic (Def. 1) can then be rewritten as follows:

hMp,cseed(u)

= min
u⪯pm1⪯p ⋅⋅⋅⪯pml⪯pvt

mi∈M

∑
0≤i≤l

[P (ti) − P (ti+1) − score(mi+1)]

= P (u) − max
u⪯pm1⪯p ⋅⋅⋅⪯pml⪯pvt

mi∈M

∑
0≤i≤l

score(mi+1)

= P (u) − Sp(u).

Lemma 5. Layer Lℓ (ℓ > 0) is fully determined by the set of those
matches m for which ℓ ≤ Sp(m) < ℓ + r:

Lℓ = {u ∣ ∃m ∈M ∶ u ⪯p m and Sp(m) ∈ [ℓ, ℓ + r)}.

Proof. Take any state u ∈ Lℓ. Its score Sp(u) ≥ ℓ > 0 implies that
there is a non-empty ⪯p-chain u ⪯p m1 ⪯p m2 ⪯p . . . with score(m1)+
score(m2)+⋅ ⋅ ⋅ ≥ ℓ. The score of each match is less than r and thus there
must be a match mi so that the subset of the chain starting at mi has score
Sp(mi) = score(mi) + score(mi+1) + ⋅ ⋅ ⋅ + in the interval [ℓ, ℓ + r).
This implies that for any u with score Sp(u) ≥ ℓ > 0 there is a match with
score in [ℓ, ℓ + r) succeeding u, as required.

B.4 Computation of the gap-chaining seed heuristic

In this section we prove (Thm. 5) that we can change the dependency
of GCSH on cgs to cseed by introducing a new partial order ⪯T on the
matches. This way, Thm. 4 applies and we can efficiently compute GCSH.
Recall that the gap-seed cost is cgs =max(cgap, cseed), and that the gap
transformation is:

Definition 4 (Gap transformation). The partial order ⪯T on states is
induced by comparing both coordinates after the gap transformation

T ∶ ⟨i, j⟩↦ (i − j − P ⟨i, j⟩, j − i − P ⟨i, j⟩)

The following lemma allows us to determine whether cgap or cseed
dominates the cost cgs between two matches, based on the relation ⪯T .

Lemma 6. Let u and v be two states with v at the start of some seed. Then
u ⪯T v if and only if cgap(u, v) ≤ cseed(u, v). Furthermore, u ⪯T v

implies u ⪯ v.

Proof. Let u = ⟨i, j⟩ and v = ⟨i′, j′⟩. By definition, u ⪯T v is equivalent
to

⎧⎪⎪⎨⎪⎪⎩

i−j−P (u) ≤ i′−j′−P (v)
j−i−P (u) ≤ j′−i′−P (v)

⇔
⎧⎪⎪⎨⎪⎪⎩

−((i′−i) − (j′−j)) ≤ P (u) − P (v)
(i′−i) − (j′−j) ≤ P (u) − P (v).

This simplifies to

cgap(u, v) = ∣(i′ − i) − (j′ − j)∣ ≤ P (u) − P (v) = cseed(u, v),

where the last equality holds because v is at the start of a seed.
For the second part, u ⪯T v implies 0 ≤ cgap(u, v) ≤ cseed(u, v) =

P (u) − P (v) and hence P (u) ≥ P (v). Since v is at the start of a seed,
this directly implies i ≤ i′. Since seeds have length k ≥ r we have

∣(i′ − i)− (j′ − j)∣ ≤ P (u)−P (v) = r ⋅ ∣Si...i′ ∣ ≤ r ⋅ (i′ − i)/k ≤ i′ − i.

This implies j′ − j ≥ 0 and hence j ≤ j′, as required.
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Fig. 7. Variables in Case 2 of the proof of Lemma 7. Match m has
score(m) = 2, so it has adjacent matches m1 and m2 (gray) with score(mi) ≥ 1.

A direct corollary is that for u ⪯ v with v at the start of some seed, we
have

cgs(u, v) =
⎧⎪⎪⎨⎪⎪⎩

cseed(u, v) if u ⪯T v,

cgap(u, v) if u ⪯̸T v.
(5)

A second corollary is that start(m) ⪯T end(m) for all matches
m∈M, since a match from u to v satisfies cgap(u, v) < r = cseed(u, v)
by definition.

Lemma 7. When the set of matches M is consistent, hMgcs(u) can be
computed using ⪯T -chains only:

hMgcs(u) ∶= hM⪯,cgs(u) =
⎧⎪⎪⎨⎪⎪⎩

hM⪯T ,cgs(u) if u ⪯T vt,

cgap(u, vt) if u ⪯̸T vt.

Proof. We write h ∶= hMgcs= hM⪯,cgs (Def. 1) and h′ ∶= hM⪯T ,cgs.
Case 1: u ⪯̸T vt. Let u ⪯ m1 ⪯ ⋅ ⋅ ⋅ ⪯ ml ⪯ vt be a chain minimizing

h(u) in Def. 1, so

h(u) = cgs(u,m1) + cm(m1) + cgs(m1,m2) + ⋅ ⋅ ⋅ + cgs(ml, vt).

By definition, cgs ≥ cgap, and cm(mi) ≥ cgap(start(mi), end(mi)),
so the weak triangle inequality (Lemma 1) for cgap gives

h(u) ≥ cgap(u,m1) + cgap(m1) + ⋅ ⋅ ⋅ + cgap(ml, vt) ≥ cgap(u, vt).

Since u⪯̸T vt, the empty chain u⪯vt has cost h(u) ≤ cgs(u, vt) =
cgap(u, vt). Combining the two inequalities, h(u) = cgap(u, vt).

Case 2: u ⪯T vt. First rewrite h and h′ recursively as

h(u) = min
m∈M

u⪯m⪯vt

(cgs(u,m) + cm(m) + h(end(m))) (6)

h′(u) = min
m∈M

u⪯Tm⪯T vt

(cgs(u,m) + cm(m) + h′(end(m))), (7)

both with base case h(vt)=h′(vt) = 0 after eventually taking mω . We
will show that

h(u) = min
m∈M

u⪯Tm⪯T vt

(cgs(u,m) + cm(m) + h(end(m))), (8)

which is exactly the recursion for h′, so that by induction h(u) = h′(u).
By Lemma 6, every ⪯T -chain is a ⪯-chain, so h(u) ≤ h′(u). To prove

h(u)=h′(u), it remains to show the reverse inequality, h′(u) ≤ h(u). To
this end, choose a match m that

(priority 0) minimizes h(u) in Eq. (6), and among those, has
(priority 1) maximal cseed(u,m), and among those, has
(priority 2) minimal cgap(u,m), and among those, has
(priority 3) minimal cgap(m,vt).

We show that u ⪯T m (in 2.A) and m ⪯T vt (in 2.B), which
proves Eq. (8).

Part 2.A: u ⪯T m. Let s and t be the begin and end of m (Fig. 7), and
let m′ be a match minimizing h(t) in Eq. (6) so

h(t) = cgs(t,m′) + cm(m′) + h(end(m′)).

Since m′ comes after t we have cseed(u,m′) > cseed(u,m) (p.1) and
hence m′ does not minimize h(u) (p.0):

h(u) < cgs(u,m′) + cm(m′) + h(end(m′)).

Using the minimality of m, the non-minimality of m′, and the triangle
inequality we get

cgs(u, s) + cm(m) + h(t) = h(u)

< cgs(u,m′) + cm(m′) + h(end(m′))

≤ cgs(u, t) + cgs(t,m′) + cm(m′) + h(end(m′))

= cgs(u, t) + h(t)

so we have

cgs(u,m) + cm(m) < cgs(u, t). (9)

From the triangle inequality for cgap, from cgap(u, s) ≤ cgs(u, s),
and from cgap(s, t) ≤ cm(m), and from Eq. (9) we obtain

cgap(u, t) ≤ cgap(u, s)+ cgap(s, t) ≤ cgs(u, s)+ cm(m) < cgs(u, t).

This implies cgs(u, t) = cseed(u, t) and hence reusing Eq. (9)

cgap(u, s) + cm(m) ≤ cgs(u, s) + cm(m)

< cseed(u, t) = cseed(u, s) + cseed(s, t).

We have cm(m) = cseed(s, t) − score(m), so the above simplifies
to cgap(u, s) < cseed(u, s) + score(m) and since these are integers
cgap(u, s) ≤ cseed(u, s) + score(m) − 1.

When score(m) = 1, this implies cgap(u, s) ≤ cseed(u, s) and
u ⪯T s = start(m) by Lemma 6.

When score(m) > 1, suppose that cgap(u, s) > cseed(u, s) ≥ 0.
That means that u is either above or below the diagonal of s. Let
s1 = ⟨si, sj ± 1⟩ be the state adjacent to s on the same side of this
diagonal as u. This state exists since u ⪯ s1 ⪯ t. Then cgap(u, s1) =
cgap(u, s)−1, and by consistency ofM there is a match m1 from s1 to
t with cm(m1) ≤ cm(m)+1. Then

cgs(u, s1) + cm(m1) + h(t)

≤ cgs(u, s)−1 + cm(m)+1 + h(t) = h(u),

showing that m1 minimizes h(u) (p.0). Also cseed(u,m1) =
cseed(u,m1) (p.1) and cgap(u,m1) < cgap(u,m) (p.2), so that m1

contradicts the minimality of m. Thus, cgap(u, s) > cseed(u, s) is
impossible and u ⪯T s.

Part 2.B: m ⪯T vt. When there is some match m′ succeeding m in
the chain, we have m ⪯ m′ ⪯ vt and hence m ⪯ vt. Thus, suppose that
m is the only match in the chain u ⪯m ⪯ vt minimizing h(u). We repeat
the proofs of Part 2.A in the reverse direction to show that m ⪯T vt.
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Since cseed(u,m) is maximal, h(u) < cgs(u,mω) and thus

h(u) = cgs(u, s) + cm(m) + cgs(m,vt) < cgs(u, vt).

By assumption we have u ⪯T vt and thus cgs(u, vt) = cseed(u, vt).
This gives

cseed(u, s) + cseed(s, t)− score(m) + cgap(t, vt)

< cseed(u, vt) = cseed(u, s) + cseed(s, t) + cseed(t, vt).

Cancelling terms we obtain cgap(t, vt) < cseed(t, vt) + 1 and since
they are integers cgap(t, vt) ≤ cseed(t, vt) + score(m)−1. When
score(m) = 1, this implies t ⪯T vt, as required.

When score(m) > 1, suppose that cgap(t, vt) > cseed(t, vt). Let
t2 = ⟨ti, tj ± 1⟩ be the state adjacent to t on the same side of the diagonal
as vt. By consistency of M there is a match m2 from s to t2 with
score(m2) ≥ score(m)−1 and cgap(t2, vt) = cgap(t, vt) − 1. Then
m2 minimizes h(u) (p.0)

cgs(u, s) + cm(m2) + cgs(t2, vt)

≤ cgs(u, s) + cm(m)+1 + cgs(t, vt)−1 = h(u),

and furthermore cseed(u,m2) = cseed(u,m) (p.1), cgap(u,m2) =
cgap(u,m) (p.2), and cgap(m2, vt) < cgap(m,vt) (p.3), contradicting
the choice of m, so cgap(t, vt) > cseed(t, vt) is impossible
and t ⪯T vt.

Theorem 5. Given a consistent set of matchesM, the gap-chaining seed
heuristic can be computed using scores in the transformed domain:

hMgcs(u) =
⎧⎪⎪⎨⎪⎪⎩

P (u) − ST (u) if u ⪯T vt,

cgap(u, vt) if u ⪯̸T vt.

Proof. Write h ∶= hMgcs and h′ ∶= hM⪯T ,cgs. When u ⪯̸T vt,
h(u) = cgap(u, vt) by Lemma 7. Otherwise, when u⪯T vt, we have
h(u) = h′(u). Let u⪯Tm1⪯T . . .⪯T vt be a ⪯T -chain for h′ as in Def. 1.
All terms in h′ satisfy end(mi) ⪯T start(mi+1), so cgap ≤ cseed and
by Lemma 6 cgs(mi,mi+1) = cseed(mi,mi+1). Thus, h′ = h⪯T ,cseed,
and hMgcs(u) = P (u) − ST (u) by Thm. 4.



16 R. Groot Koerkamp and P. Ivanov

5 7 9 11 13 15 17 19 21 23 25
k

10 3

10 1

101

Avg. runtime per alignment [s]

n= 103 (r= 1)

n= 103 (r= 2)

n= 104 (r= 1)

n= 104 (r= 2)

n= 105 (r= 1)

n= 105 (r= 2)

n= 106 (r= 1)

n= 106 (r= 2)

(a) d = 4%

5 7 9 11 13 15 17 19 21 23 25
k

10 3

10 1

101

Avg. runtime per alignment [s]

n= 103 (r= 1)
n= 103 (r= 2)

n= 104 (r= 1)

n= 104 (r= 2)

n= 105 (r= 1)

n= 105 (r= 2)

n= 106 (r= 2)

(b) d = 12%

Fig. 8. Parameter grid search on synthetic data (N = 107). Runtime of A*PA with GCSH with DT for varying k and r at n ∈ {103, 104, 105, 106}bp and (a) d=4%
and (b) d=12%. Black lines indicate r=1 and green lines indicate r=2. Missing datapoints are either due to timing out at n/N ⋅ 1000 s, or in 2 cases due to exceeding the
32GiB memory limit. Red dots indicate alignments where k is too small or large (see App. C.1).
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Fig. 9. Parameter grid search on human data (logarithmic). Plots show the runtimes on human ONT reads for varying k and r for A*PA with GCSH with DT. ONT reads
are without (left) and with (right) genetic variation. Each dot shows the runtime for aligning a single sequence pair (capped at 100 s). Red dots indicate alignments where k

is too small or large (see App. C.1).

C Further results

C.1 A*PA parameter grid search

We ran a parameter grid search over various r and k with 5 parallel jobs
for both synthetic data and human data.

Synthetic data. Figs. 8a and 8b compare the runtime of A*PA with
GCSH with DT for various k for both exact and inexact matches. For low
divergence, exact matches are faster since they have a sufficiently large
potential and do not require the overhead of finding all inexact matches,
while for large divergence, the additional potential of inexact matches is
required. In both cases, k=15 is a reasonable choice.

Human data. Fig. 9 shows that r=2 and k=15 minimize the runtime
of the third quartile on both datasets. On the ONT reads without genetic
variation, choosing a larger k slightly reduces the median runtime, but
increases the number of timeouts, making k=15 a reasonable tradeoff.

Bounds on k. The runtime is generally not very sensitive to the exact
choice of k as long as it falls within two bounds. First, too many spurious
matches are prevented by setting k ≥ log4 n when r=1 and k ≥ 2 + log4 n
when r=2. For example, n=106 would require k ≥ 10 when r=1 or
k ≥ 12 when r=2. Secondly, the potential P ≈ r ⋅ n/k of the heuristic
should be sufficiently larger than the divergence, which implies k should
be a bit less than r/d. So, for d=12% we would choose k ≤ 1/0.12 = 8.3
when r=1 and k ≤ 2/0.12 = 16.7 when r=2.

Figs. 8 and 9 show alignments where k is not within these bounds in
red, and indeed these alignments are relatively slow.

C.2 Runtime scaling with length

In Fig. 4a we compare our A* heuristics with EDLIB and BIWFA in terms
of runtime scaling with sequence length n.

C.3 Expanded states and equivalent band

The main benefit of an A* heuristic is a lower number of expanded
states, which translates to faster runtime. Instead of evaluating the
runtime scaling with length (Fig. 10), we can judge how well a heuristic
approximates the edit distance by directly measuring the equivalent
band (Fig. 11) of each alignment: the number of expanded states divided
by sequence length n, or equivalently, the number of expanded states per
base pair. The theoretical lower bound is an equivalent band of 1, resulting
from expanding only the states on the main diagonal.

The equivalent band tends to be constant in n, indicating that the
number of expanded states is linear on the given domain. The equivalent
band of SH with inexact matches starts to grow around n ≥ 3 ⋅ 106
at divergence d=4%, and around n ≥ 3 ⋅ 105 at d=12%. Because of
the chaining, CSH and GCSH cope with spurious matches and remain
constant in equivalent band (i.e. linear expanded states with n). The
equivalent band for GCSH is lower than CSH due to better accounting
for indels. The DT variants expand fewer states by skipping non-farthest
reaching states, also lowering the equivalent band.
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Fig. 11. Equivalent band scaling with sequence length on synthetic data. (k=15). The equivalent band is the number of expanded states per bp for aligning synthetic
sequences. Averages are over total N=107 bp.

C.4 Runtime scaling with divergence: two modes

Figure 12 shows the runtime scaling with divergence for various
heuristics. We notice two regimes of operation, depending on whether
the heuristic potential P is sufficient to compensate for the edit distance:
near-linear in n (constant in d) and quadratic in n (linear in d). The edit
distance becomes larger than the potential P around d = r/k. For k=15
as in Fig. 12, the threshold is near d≈1/k=6.7% for exact matches and
near d≈2/k=13.3% for inexact matches. Every error not accounted for
by the heuristic triggers a search “to the side”, causing A* to explore
O(n) additional states. When using DT, only O(s−P ) additional farthest
reaching states are explored instead, where s is the edit distance. This
leads to observed runtimes of O(n+n ⋅max(s−P,0)) without DT, and
O(n +max(s − P,0)2) with DT. These are similar to EDLIB’s O(ns)
and BIWFA’s O(n + s2), but skipping over the first P errors.

Length [kbp] Divergence [%] Max gap [kbp]

Dataset Cnt min mean max min mean max min mean max

ONT 50 500 594 849 2.7 6.3 18.0 0.02 0.1 1

ONT+gen.var. 48 502 632 1053 4.4 7.4 19.8 0.05 1.9 42

Table 2. Human datasets statistics. ONT reads only include short
gaps, while genetic variation also includes long gaps. Cnt: number of
sequence pairs. Max gap: longest gap in the reconstructed alignment.

C.5 Human data statistic

Statistics on our human datasets are presented in Table 2.

C.6 Memory usage

Table 3 compares memory usage of aligners on synthetic sequences of
length n=106. Alignments with inexact matches (d≥8%) use significantly
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more memory than those with exact matches because more k-mer hashes
need to be stored to find inexact matches. Table 4 compares memory usage
on the human data sets.

Memory usage [MB]

Aligner d=1% d=4% d=8% d=12%

EDLIB 2 1 2 2

BIWFA 15 13 14 18

SH 50 59 151 480

CSH 52 59 151 261

GCSH 49 50 151 255

SH + DT 49 49 151 150

CSH + DT 49 49 151 150

GCSH + DT 48 46 152 150

Table 3. Memory usage per algorithm (synthetic data, n=106). Exact
matches are used when d ≤ 4%, and inexact matches when d ≥ 8%.

ONT reads + genetic var.

Aligner Median Max Median Max

EDLIB 2 5 2 6

BIWFA 11 19 15 24

A*PA (GCSH + DT) 160 3478 270 6926

Table 4. Memory usage [MB] of aligners on human data. Medians
are over all alignments; maximums are over alignments not timing out.

C.7 Runtime profile of A*PA

Figures 13a and 13b compare the time used by stages of A*PA. On
synthetic data with exact matches (r=1), the runtime is spread over all
parts of the algorithm. When using inexact matches, precomputation takes
a significant fraction of the total time and updating contours becomes
slower due to the increased number of matches.

On human data, faster alignments spend a large fraction of their
time on the precomputation, followed by the updating of contours after

pruning matches. Slower alignments on the other hand are limited by the
performance of the A* algorithm, and spend a large fraction of time on
opening and expanding states, and evaluating the heuristic.

C.8 Quadratic scaling in complex regions

Figure 14 shows the effect of complex regions in the sequences on GCSH
(and thus on all our heuristics).

C.9 Linear mode without matches

States are penalized by the number of remaining seeds that cannot be
matched. So, curiously, matches are not always needed to direct the A*
search to an optimal path. In fact, when each seed contains exactly one
mutation seed heuristic scales linearly even though there are no matches,
as shown by the artificial example in Fig. 15.

C.10 Comparison of heuristics and techniques

Figure 16 shows the effect of our heuristics and optimizations for aligning
complex short sequences. The effect of pruning is most noticeable for
CSH and GCSH without DT. GCSH is our most accurate heuristic, so, as
expected, it leads to the lowest number of expanded states.
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(a) Synthetic data
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A*: h() evaluation
A*: Pruning matches
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(b) Human data

Fig. 13. Runtime distributions per stage of A*PA (GCSH with DT) (stages do not overlap). Stage A* includes expanding and opening states. Pruning matches includes
consistency checks. Updating contours includes updating of contours after pruning. (a) On synthetic data (n=106 bp, N=107 bp total, k=15). The circle area is proportional
to the total runtime. Figures for r=1 and d≥8% are skipped due to timeouts (100 s). (b) On human data (r=2). Alignments are sorted by total runtime (timeouts not shown).

(a) High divergence (b) Long indel (c) Short repeats

Fig. 14. Quadratic exploration behavior for complex alignments (GCSH with
DT, r=2, k=10, synthetic sequences, n=1000). (a) A highly divergent region, (b) a
deletion, and (c) a short repeated pattern inducing a quadratic number of matches.
The colour corresponds to the order of expansion, from blue to red.

Fig. 15. Artificial example of A* with seed heuristic with no matches
(n=m=50, r=1, k=5, 80% similarity, 1 mutation per seed alternating substitution,
insertion, and deletion). The background colour indicates hs(u) with higher values
darker. Expanded states are green ( ), open states blue ( ).
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Base Pruning DT Pruning + DT

Dijkstra

SH

CSH

GCSH

Fig. 16. Expanded states for various heuristics and techniques, on a sequence containing a noisy region, a repeat, and an indel (n=1000, d=17.5%). The colour
shows the order of expanding, from blue to red. The sequences include a highly divergent region, a repeat, and a gap. Matches are shown as black diagonals, with inexact
matches in grey and pruned matches in red. The final path is black. Dijkstra does not have pruning variants, and Dijkstra with DT is equivalent to WFA. More accurate
heuristics reduce the number of expanded states by more effectively punishing repeats (CSH) and gaps (GCSH). Pruning reduces the number of expanded states before
the pruned matches, and diagonal transition reduces the density of expanded states in quadratic regions.
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D Notation

Object Notation

Sequences
Alphabet Σ = {A,C,G,T}
Sequences A = a0a1 . . . ai . . . an−1 ∈ Σ∗

B = b0b1 . . . bj . . . bm−1 ∈ Σ∗
Substring Ai..i′ = ai . . . ai′−1
Prefix A<i = a0 . . . ai−1
Suffix A≥i = ai . . . an−1
Edit distance ed(A,B)
Divergence d = ed(A,B)/n
Error rate e

Alignment graph
Graph G = (V,E)
Vertices (states) u, v ∈ V = {⟨i, j⟩ ∣ 0 ≤ i ≤ n,0 ≤ j ≤m}
Edges match/substitution ⟨i, j⟩→ ⟨i+1, j+1⟩

deletion ⟨i, j⟩→ ⟨i+1, j⟩
insertion ⟨i, j⟩→ ⟨i, j+1⟩

Distance d(u, v)
Path, shortest path π, π∗

Cost cpath(π)

Diagonal transition
Farthest-reaching state Fgk = i+j on diagonal k=i−j

A*
Start and target state vs = ⟨0,0⟩, vt = ⟨n,m⟩
Distance from vs g∗= d(vs, ⋅)
Distance to vt h∗= d(⋅, vt)
Heuristic h

Best distance from start g

Estimated distance f = g + h
Admissible heuristic h ≤ h∗
Consistent heuristic h(u) ≤ d(u, v) + h(v)
Expanded states E

Object Notation

Seeds and matches
Seed length k

Seed potential r

Seeds s ∈ S, sl = Alk..lk+k
Seeds in suffix S≥i = {sl ∈ S ∣ lk ≥ i}
Alignment of seed πs

Matches (per seed) m ∈M,Ms, M = ∣M∣
Terminal match mω from vt to vt

Cost of match 0 ≤ cm(m) < r
Score of match 0 < score(m) = r − cm(m) ≤ r
Score of seed score(s) =maxm∈Ms score(m)

Chains
Preceding states ⟨i, j⟩ ⪯ ⟨i′, j′⟩ when i ≤ i′ and j ≤ j′
Preceding matches m ⪯m′ when end(m) ⪯ start(m′)

u ⪯m when u ⪯ start(m)
Partial order u ⪯p v when p(u) ≤ p(v)
i-order ⟨i, j⟩ ⪯i ⟨i′, j′⟩ when i ≤ i′
⪯p-chain m1 ⪯p ⋅ ⋅ ⋅ ⪯p ml ⪯p vt

Chaining costs
Chaining cost γ(m,m′)
Gap cost cgap(⟨i, j⟩, ⟨i′, j′⟩) ∶= ∣(i′−i)−(j′−j)∣
Seed cost cseed(u, v) = r ⋅ ∣Su...v ∣
Gap-seed cost cgs =max(cgap, cseed)

Scores
Potential P ⟨i, j⟩ = r ⋅ ∣S≥i∣
Chain score Sp(m)=maxm⪯pm1⪯p ⋅⋅⋅⪯pvt score(m)+ . . .

Sp(u) =maxu⪯pm⪯pvt Sp(m)
Computation hp,cseed(u) = P (u) − Sp(u)

Heuristics
SH hs(u) = P (u) − Si(u)
CSH hcs(u) = P (u) − S⪯(u)
GCSH hgcs(u) =max(cgap(u, vt), P (u) − ST (u))

T ∶ ⟨i, j⟩↦ (i−j−P ⟨i, j⟩, j−i−P ⟨i, j⟩)
Pruning heuristic ĥM

Layers
Layer Lℓ = {u ∣ Sp(u) ≥ ℓ}
Dominant state u ∈ Lℓ s.t. {v ∈ Lℓ ∣ u ⪯ v} = {u}
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