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Abstract

Motivation Pairwise alignment is at the core of computational biology. Most commonly used
exact methods are either based on O(ns) band doubling or O(n + s2) diagonal transition, where n is
the sequence length and s the number of errors. However, as the length of sequences has grown,
these exact methods are often replaced by approximate methods based on e.g. seed-and-extend and
heuristics to bound the computed region. We would like to develop an exact method that matches
the performance of these approximate methods.

Recently, Astarix introduced the A* shortest path algorithm with the seed heuristic for exact
sequence-to-graph alignment. A*PA adapted and improved this for pairwise sequence alignment
and achieves near-linear runtime when divergence (error rate) is low, at the cost of being very slow
when divergence is high.

Methods We introduce A*PA2, an exact global pairwise aligner with respect to edit distance. The
goal of A*PA2 is to unify the near-linear runtime of A*PA on similar sequences with the efficiency of
dynamic programming (DP) based methods. Like Edlib, A*PA2 uses Ukkonen’s band doubling in
combination with Myers’ bitpacking. A*PA2 1) uses large block sizes inspired by Block Aligner,
2) extends this with SIMD (single instruction, multiple data), 3) introduces a new profile for efficient
computations, 4) introduces a new optimistic technique for traceback based on diagonal transition,
5) avoids recomputation of states where possible, and 6) applies the heuristics developed in A*PA
and improves them using pre-pruning.

Results With the first 4 engineering optimizations, A*PA2-simple has complexity O(ns) and is
6× to 8× faster than Edlib for sequences ≥ 10 kbp. A*PA2-full also includes the heuristic and is
often near-linear in practice for sequences with small divergence. The average runtime of A*PA2 is
19× faster than the exact aligners BiWFA and Edlib on >500 kbp long ONT (Oxford Nanopore
Technologies) reads of a human genome having 6% divergence on average. On shorter ONT reads of
11% average divergence the speedup is 5.6× (avg. length 11 kbp) and 0.81× (avg. length 800 bp).
On all tested datasets, A*PA2 is competitive with or faster than approximate methods.
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(a) Dijkstra (b) WFA (c) A*PA (d) Ukkonen (e) Edlib (f) A*PA2
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Figure 1 Alignment of two sequences of length 3000 bp with 20% divergence using different
methods. Coloured pixels correspond to visited states in the edit graph or dynamic programming
matrix, and the blue to red gradient indicates the order of computation. The black path indicates an
optimal alignment. (a) Dijkstra is the classical shortest path algorithm. (b) WFA uses the diagonal
transition algorithm. (c) A*PA with the gap-chaining seed heuristic. (d) Ukkonen’s method uses
band doubling. (e) Edlib adds the gap heuristic and bitpacking. (f) A*PA2-simple additionally
computes blocks of 256 columns at a time, and (g) A*PA2-full applies the heuristics of A*PA.
Figure 14 in Appendix A.3 shows the same methods on a more complicated alignment.

1 Introduction

The problem of global pairwise alignment is to find the shortest sequence of edit operations
(insertions, deletions, substitutions) to convert a string into a second string [34, 49], where
the number of such operations is called the Levenshtein distance or edit distance [23, 50].

Over time, the length of genomic reads has increased from hundreds of basepairs to
hundreds of thousands basepairs now. Meanwhile, the complexity of practical exact algorithms
has not been improved by more than a constant factor since the introduction of the diagonal
transition algorithm [48, 30].

Our recent work A*PA [13] uses the A* shortest path algorithm to speed up alignment
and has near-linear runtime when divergence is low. A drawback of A* is that it uses a queue
and must store all computed distances, causing large (up to 500×) overhead compared to
methods based on dynamic programming (DP).

This work introduces A*PA2, a method that unifies the heuristics and near-linear runtime
of A*PA with the efficiency of DP based methods.

As Fickett [10, p. 1] stated 40 years ago and still true today,
at present one must choose between an algorithm which gives the best alignment but
is expensive, and an algorithm which is fast but may not give the best alignment.

In this paper we narrow this gap and show that A*PA2 is nearly as fast as approximate
methods.

1.1 Contributions
We introduce A*PA2, an exact global pairwise sequence aligner with respect to edit distance.

In A*PA2, we combine multiple existing techniques and introduce a number of new ideas
to obtain up to 19× speedup over existing single-threaded exact aligners. A*PA2 is often
faster and never much slower than approximate methods.

As a starting point, we take the band doubling algorithm implemented by Edlib [58]
using bitpacking [31]. First, we speed up the implementation (points 1., 2., 3.). Then, we
reduce the amount of work done (4., 5.). Lastly, we apply A* heuristics (6.).
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17:2 A*PA2: Up to 19× faster exact global alignment

1. Block-based computation Edlib (Figure 1e) computes one column of the DP matrix
at a time, and for each column decides which range (subset of rows) of states to compute.
We significantly reduce this overhead by processing blocks of 256 columns at a time
(Figure 1f), taking inspiration from Block Aligner [26]. Correspondingly, we only store
states of the DP-matrix at block boundaries, reducing memory usage.

2. SIMD We speed up the computation of each block by using 256bit SIMD, allowing the
processing of 4 computer words in parallel.

3. Novel encoding We introduce a novel encoding of the input sequence to speed up SIMD
operations by comparing characters bit-by-bit and avoiding slow gather instructions.
This limits the current implementation to alphabets of size 4.

4. Incremental doubling Both the band doubling method of Ukkonen [48] and Edlib
recompute states after doubling the threshold. We avoid this by using the theory behind
the A* algorithm, extending the incremental doubling of Fickett [10] to blocks and
arbitrary heuristics.

5. Traceback For the traceback, we optimistically use the diagonal transition method [48,
30, 29] within each block with a strong adaptive heuristic, only falling back to a full
recomputation of the block when needed.

6. A* We apply the gap-chaining seed heuristic (GCSH) of A*PA [13] (Figures 1c and 1g),
and improve it using pre-pruning. This technique discards most of the spurious (off-path)
matches ahead of time.

1.2 Previous work
We give a brief overview of developments that this work builds on, in chronological order per
approach. See also, e.g., the reviews by Kruskal [22] and Navarro [33], and the introduction
of the A*PA paper [13]. Section 2 covers relevant topics more formally.

Needleman-Wunsch Pairwise alignment has classically been approached as a dynamic
programming problem. For input strings of lengths n and m, this method creates a (n + 1) ×
(m + 1) table that is filled cell by cell using a recursive formula. Needleman and Wunsch [34]
gave the first O(n2m) algorithm, and Sellers [41] and Wagner and Fischer [50] improved
this to what is now known as the O(nm) Needleman-Wunsch algorithm, building on the
quadratic algorithm for longest common subsequence by Sankoff [40].

Graph algorithms It was already realized early on that an optimal alignment corresponds
to a shortest path in the edit graph [49, 48]. Both Ukkonen and Myers [30] remarked that
this can be solved using Dijkstra’s algorithm [7], taking O(ns) time (Figure 1a), where s

is the edit distance between the two strings and is typically much smaller than the string
length. (Although Ukkonen only gave a bound of O(nm log(nm)).) However, Myers [30, p.
2] observed that

the resulting algorithm involves a relatively complex discrete priority queue and this
queue may contain as many as O(ns) entries even in the case where just the length of
the [. . . ] shortest edit script is being computed.

Hadlock [14] realized that Dijkstra’s algorithm can be improved upon by using A* [16], a
more informed algorithm that uses a heuristic function h that gives a lower bound on the
remaining edit distance between two suffixes. He uses two heuristics, the widely used gap
cost heuristic [48, 14, 55, 44, 45, 35] that simply uses the difference between the lengths
of the suffixes as lower bound (Figure 1e), and an improved heuristic based on character
frequencies in the two suffixes. In Astarix, Ivanov et al. [19, 20] use A* for sequence-to-graph
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alignment and introduce the seed heuristic. A*PA [13] improves this to the gap-chaining
seed heuristic (GCSH) with pruning to obtain near-linear runtime when errors are uniform
random (Figure 1c). Nevertheless, as Spouge [45, p. 3] states,

algorithms exploiting the lattice structure of an alignment graph are usually faster
and further [44, p. 4]:

This suggests a radical approach to A* search complexities: dispense with the lists [of
open states] if there is a natural order for vertex expansion.

In this work we follow this advice and replace the plain A* search in A*PA with a much
more efficient approach based on computational volumes that merges DP and A*.

Computational volumes Wilbur and Lipman [52] were, to our knowledge, the first to speed
up the O(nm) DP algorithm, by only considering states near diagonals with many k-mer
matches, but at the cost of giving up the exactness of the method. Fickett [10] noted that
for some chosen parameter t that is at least the edit distance s, only those DP-states with
cost at most t need to be computed. This only requires O(nt) time, which is fast when t is
an accurate bound on the distance s. For example t can be set as a known upper bound for
the data being aligned, or as the length of a suboptimal alignment. When t = t0 turns out
too small, a larger new bound t1 can be chosen, and only states with distance in between t0
and t1 have to be computed. When t increases by 1 in each iteration, this closely mirrors
Dijkstra’s algorithm.

Ukkonen [48] introduced a very similar idea, statically bounding the computation to only
those states that can be contained in a path of length at most t from the start to the end of
the graph (Figure 1d). On top of this, Ukkonen introduced band doubling: t0 = 1 can be
doubled (ti = 2i) until tk is at least the actual distance s. This finds the alignment in O(ns)
time.

Spouge [44] unified the methods of Fickett and Ukkonen in computational volumes (see
Section 2), small subgraphs of the full edit graph that are guaranteed to contain all shortest
paths. As Spouge noted:

The order of computation (row major, column major or antidiagonal) is just a minor
detail in most algorithms.

But this is exactly what was investigated a lot in the search for more efficient implementations.

Parallelism In the 1990s, the focus shifted from reducing the number of computed states
to computing states faster through advancements in implementation and hardware. This
resulted in a plethora of new methods. While there are many recent methods optimizing the
computation of arbitrary scoring schemes and affine costs [43, 12, 5, 46, 42], here we focus
on methods for computing edit distance.

The first technique in this direction is microparallelism [1], also called SWAR (SIMD
within a register), where each (64 bit) computer word is divided into multiple (e.g. 16
bit) parts, and word-size operations modify all (4) parts in parallel. This was then applied
with inter-sequence parallelism to align a given query to multiple reference sequences in
parallel [1, 2, 54, 18, 38]. Hughey [17] noted that anti-diagonals of the DP matrix are
independent and can be computed in parallel, to speed up single alignments. Wozniak [53]
applied SIMD (single instruction, multiple data) for this purpose, which are special CPU
instructions that operate on multiple computer words at a time. Rognes and Seeberg [39, p.
702] also use microparallelism, but use vertical instead of anti-diagonal vectors:

WABI 2024



17:4 A*PA2: Up to 19× faster exact global alignment

0

0

1 2 3 4

1

2

3

4

5

1

1

1

2

2

3

1

2 1 2 2

3 32 2

2334
A

B

B

ACBA

A

C

Figure 2 An example of an edit graph (left) corresponding to the alignment of strings ABCA
and ACBBA, adapted from [41]. Solid edges indicate insertion/deletion/substitution edges of cost
1, while dashed edges indicate matches of cost 0. All edges are directed from the top-left to the
bottom-right. The shortest path of cost 2 is shown in blue. The right shows the corresponding
dynamic programming (DP) matrix containing the distance g∗(u) to each state.

The advantage of this approach is the much-simplified and faster loading of the vector
of substitution scores from memory. The disadvantage is that data dependencies
within the vector must be handled.

To work around these dependencies, Farrar [9] introduced an alternative striped SIMD scheme
where lanes are interleaved with each other. A*PA2 does not use this, but for example
BSAlign [42] does.

Myers [31] introduced a bitpacking algorithm specifically for edit distance (Figure 1e).
It bit-encodes the differences between w = 64 states in a column into two computer words
and gives an efficient algorithm to operate on them. This provides a significant speedup
over previous methods. The supplement of BitPAl [27, 3] introduces an alternative scheme
for edit distance based on a different bit-encoding, but as both methods end up using 20
instructions (see Appendix A.1) we did not pursue this further.

Tools There are many semi-global aligners that implement O(nm) (semi)-global align-
ment using numerous of the aforementioned implementation techniques, such as SeqAn [8],
Parasail [6], SWIPE [38], Opal [57], libssa [11], SWPS3 [47], and SSW library [56].

Other methods use seed-chain-extend as a proxy for edit distance by considering chains of
matching k-mers (seeds). LCSk [4] and LCSk++ [37, 36] find a maximal chain of (overlapping)
k-mers. DAlign [32] and Minimap [24, 25] further extend the best chain into a full alignment.
ChainX [21] gives an efficient method to penalize the gap cost between consecutive matches.

Dedicated global alignment implementations implementing band doubling are much
rarer. Edlib [58] implements O(ns) band doubling and Myers’ bitpacking (Figure 1e).
KSW2 implements band doubling for affine costs [46, 25]. WFA and BiWFA [29, 28]
implement the O(n + s2) expected time diagonal transition algorithm [48, 30] (Figure 1b).
Block Aligner [26] is an approximate aligner that can handle position-specific scoring
matrices whose main novelty is to divide the computation into larger blocks. Recently,
BSAlign [42] provided a new implementation of band doubling based on Farrar’s striped
method that focusses on affine costs but also supports edit distance. Lastly, A*PA [13]
directly implements A* on the alignment graph using the gap-chaining seed heuristic.
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2 Preliminaries
Edit graph We take as input two zero-indexed sequences A and B over an alphabet of size
4 of lengths n and m. The edit graph (Figure 2) contains states ⟨i, j⟩ (0 ≤ i ≤ n, 0 ≤ j ≤ m)
as vertices. It further contains directed insertion and deletion edges ⟨i, j⟩ → ⟨i, j + 1⟩ and
⟨i, j⟩ → ⟨i + 1, j⟩ of cost 1, and diagonal edges ⟨i, j⟩ → ⟨i + 1, j + 1⟩ of cost 0 when Ai = Bj

and substitution cost 1 otherwise. A shortest path from vs := ⟨0, 0⟩ to vt := ⟨n, m⟩ in the
edit graph corresponds to an optimal alignment of A and B. The distance d(u, v) from u to
v is the length of the shortest (minimal cost) path from u to v, and we use distance, length,
and cost interchangeably. We write g∗(u) := d(vs, u) for the distance from the start to u,
h∗(u) := d(u, vt) for the distance from u to the end, and f∗(u) := g∗(u) + h∗(u) for the
minimal cost of a path from vs to vt through u.

A* is a shortest path algorithm based on a heuristic function h(u) [16]. A heuristic is
called admissible when h(u) never overestimates the distance to the end, i.e., h(u) ≤ h∗(u),
and admissible h guarantee that A* finds a shortest path. A* expands states in order of
increasing f(u) := g(u) + h(u), where g(u) is the best distance to u found so far. We say that
u is fixed when the distance to u has been found, i.e., g(u) = g∗(u). The gap cost heuristic
h(⟨i, j⟩) = cgap(⟨i, j⟩, vt) = |(n − i) − (m − j)| is an example of a simple admissible heuristic.

Computational volumes Spouge [44] defines a computational volume as a subgraph of the
alignment graph that contains all shortest paths. Given a bound t ≥ s, some examples of
computational volumes are:
1. The entire (n + 1) × (m + 1) graph or DP table.
2. {u : g∗(u) ≤ t}, the states at distance ≤ t, introduced by Ficket [10] and similar to

Dijkstra’s algorithm (Figures 1a and 1b).
3. {u : cgap(vs, u) + cgap(u, vt) ≤ t} the static set of states possibly on a path of cost ≤ t

(Figure 1d) [48].
4. {u : g∗(u) + cgap(u, vt) ≤ t}, as used by Edlib (Figures 1e and 1f) [58, 45].
5. {u : g∗(u) + h(u) ≤ t} for a heuristic h, which A*PA2 uses (Figures 1c and 1g).

Band doubling is the following algorithm by Ukkonen [48], that depends on the choice
of computational volume being used: For a given t, we can test whether an alignment of
cost ≤ t exists by iterating over all columns, and in each column computing the distance
to the range of rows [jstart, jend] corresponding ot the computational volume being used.
When the last column is reached and the distance to vt is ≤ t, an optimal alignment is found.
Otherwise, the edit distance is > t.

Since the actual distance s is not known, multiple iterations are used and ti = 2i is
doubled until tk = 2k ≥ s > 2k−1. Typically each iteration requires O(n · t) time, and hence
the total time is n · 1 + · · · + n · 2k < 4 · n · 2k−1 < 4 · n · s = O(ns). Note that without reusing
values from previous iterations, on average each state is computed twice.

Myers’ bitpacking exploits that the difference in distance g∗(u) to adjacent states is always
in {−1, 0, +1} [31]. The method bit-encodes w = 64 differences between 65 adjacent states
in a column in two indicator words, indicating positions where the difference is +1 and −1
respectively. Given also the difference along the top, the differences along the right and
bottom of a 1 × w rectangle can be computed in only 20 bit operations (Appendix A.1). We
call each non-overlapping chunk of 64 rows a lane, so that there are ⌈m/64⌉ lanes, where the
last lane may be padded. Note that this method originally only uses 17 instructions, but
some additional instructions are needed to support multiple lanes when m > w.

WABI 2024



17:6 A*PA2: Up to 19× faster exact global alignment

Profile Instead of computing each substitution score S[Ai][Bj ] = [Ai ̸= Bj ] for the 64 states
in a word one by one, Myers’ algorithm first builds a profile [39]. For each character c, Eq[c]
stores a length m bitvector indicating which characters of B equal c. This way, adjacent
scores in a column are simply found as Eq[Ai][j . . . j′].

Edlib implements band doubling using the g∗(u) + cgap(u, vt) ≤ t computational volume and
bitpacking [58]. For traceback, it uses Hirschberg’s meet-in-the-middle approach: once the
distance is found, the alignment is started over from both sides towards the middle column,
where a state on the shortest path is determined. This is recursively applied to the left and
right halves until the sequences are short enough that O(ns) memory can be used.

A*PA uses A* with the seed heuristic [20, 13]. In its simplest form, sequence A is split
into seeds of length k = 15. For each seed, all matches in B are found using a hashmap
containing all k-mers of B. The seed heuristic in a state u is then the number of upcoming
seeds without matches, since each unmatched seed requires at least one edit to align. This is
first extended using chaining, which requires matches to form a chain (Figure 4a, somewhat
alike a dot plot), and second using gap-chaining, where joining two seeds incurs the gap
cost between them (similar to e.g. [21]). In these last cases, the value of the heuristic is the
number of remaining seeds minus the length of the longest chain. A*PA not only supports
exact matches, but also inexact matches, so that a seed without matches takes at least r = 2
edits to cross.

During the A* search, matches are pruned as soon as a shortest path to their start is
found, which increases the strength of the heuristic as the search progresses.

3 Methods

Conceptually, A*PA2 builds on Edlib. First we describe how we make the implementation
more efficient using SIMD and blocks. Then, we modify the algorithm itself by using a new
traceback method and avoiding unnecessary recomputation of states. On top of that, we
apply the A*PA heuristics for further speed gains on large and complex alignments, at the
cost of larger precomputation time to build the heuristic.

At the core, A*PA2 uses band doubling with the g∗(u) + h(u) ≤ t computational volume,
in combination with bitpacking. That is, in each iteration of t we compute the distance to
all states with g∗(u) + h(u) ≤ t. In its simple form, A*PA2-simple, we use the gap heuristic,
like Edlib does. The initial value for the tested distance t is the value of the heuristic at the
start, and in the ith iteration ti := h(⟨0, 0⟩) + B · 2i, where B is the block size introduced
below.

Section 3.1 to Section 3.6 describe our new methods, while Section 3.7 and Section 3.8
show the mathematical details of the algorithm.

3.1 Blocks

Instead of determining the range of rows to be computed for each column individually, we
determine it once per block of B = 256 consecutive columns. This computes some extra
states, but reduces the overhead by a lot. (From here on, B stands for the block size, and
not for the sequence B to be aligned.) Within each block, we iterate over lanes of w = 64
rows at a time, and for each lane compute all B columns before moving on to the next lane.

Section 3.7 explains in detail how the range of rows to be computed is determined.
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3.2 Memory

Where Edlib does not initially store intermediate values and uses meet-in-the-middle to find
the alignment, A*PA2 stores the distance to all states at the end of each block, encoded
as the distance to the top-right state of the block and the bit-encoded vertical differences
along the right-most column. This simplifies the traceback method (see Section 3.5), and
has sufficiently small memory usage to be practical.

3.3 SIMD

While it is tempting to use a SIMD vector as a single W = 256-bit word, the four w = 64-bit
words (SIMD lanes) are dependent on each other and require manual work to shift bits
between the lanes. Instead, we let each 256-bit AVX2 SIMD vector represent four 64-bit
words (lanes) that are anti-diagonally staggered as in Figure 3a. This is similar to the original
anti-diagonal tiling introduced by Wozniak [53], but using units of w-bit words instead of
single characters. This idea was already introduced in 2014 by the author of Edlib in a
GitHub issue (github.com/Martinsos/edlib/issues/5), but to our knowledge has never
been implemented in either Edlib or elsewhere.

We further improve instruction-level-parallelism (ILP) by processing 8 lanes at a time
using two SIMD vectors in parallel, spanning a total of 512 rows (Figure 3a).

When the number of remaining lanes in a block to be computed is ℓ, we process 8 lanes in
parallel as long as ℓ ≥ 8. If there are remaining lanes, we end with another 8-lane (5 ≤ ℓ < 8)
or 4-lane (1 ≤ ℓ ≤ 4) iteration that optionally includes some padding lanes at the bottom.
In case the horizontal differences along the original bottom row are needed (as required by
incremental doubling Section 3.8), we can not use padding and instead fall back to trying a
4-lane SIMD (ℓ ≥ 4), a 2-lane SIMD (ℓ ≥ 2), and lastly a scalar iteration (ℓ ≥ 1).

3.4 SIMD-friendly sequence profile

A drawback of anti-diagonal tiling is that each lane of a SIMD vector corresponds to a
different column with character ai that needs to be looked up in the profile Eq[ai][ℓ]. While
SIMD can do multiple lookups in parallel using gather instructions, these instructions are
not always efficient. Thus, we introduce the following alternative scheme. Let b = ⌈log2(σ)⌉
be the number of bits needed to encode each character, with b = 2 for DNA. For each lane,
the new profile Eq′ stores b words as an ⌈m/w⌉ × b array Eq′[ℓ][p]. Each word 0 ≤ p < b

stores the negation of the pth bit of each character in its lane. To check which characters
in lane ℓ contain character c with bit representation cb−1 . . . c0, we precompute b words
C0 = c0 . . . c0 to Cb−1 = cb−1 . . . cb−1 and then compute

∧b−1
j=0(Cj ⊕ Eq′[ℓ][j]), where ⊕

denotes the xor operation. As an example take b = 2 and a lane with w = 8 characters
(0, 1, 2, 2, 3, 3, 3, 3). Then Eq′[ℓ][0] = 00001101 (the negation of indicating odd positions)
and Eq′[ℓ][1] = 00000011, keeping in mind that bits are shown in reverse order in this
notation. If the column now contains character c = 2 = 10 we initialize C0 = 00000000 and
C1 = 11111111 and compute

(C0 ⊕ Eq′[ℓ][0]) ∧ (C1 ⊕ Eq′[ℓ][1]) = 00001101 ∧ 11111100 = 00001100,

indicating that 0-based positions 2 and 3 contain character 2. This naturally extends to
SIMD vectors, where each lane is initialized with its own constants.

WABI 2024
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(a) SIMD (b) Traceback

Figure 3 (a) SIMD processing of two times 4 lanes in parallel. This example uses lanes of 4
instead of 64 rows. First the top-left triangle is computed lane by lane, and then 8-lane diagonals
are computed by using two 4-lane SIMD vectors in parallel. (b) Computed blocks are shown in grey.
States expanded by the diagonal transition traceback in each block are shown in green. When the
distance in a block is too large, a part of the block is fully recomputed as fallback, as shown in blue.
In regions with low divergence, diagonal transition is sufficient to trace the path, and only in noisy
regions the algorithm falls back to recomputing full blocks.

3.5 Traceback
The traceback stage takes as input the computed vertical differences at the end of each block
of columns. We iteratively work backwards through the blocks. When tracing the block
covering columns i to i + B, we know the distances g(⟨i, j⟩) to the states in column i at the
start of the block, and a state u = ⟨i + B, j⟩ at distance g∗(u) in column i + B at the end of
the block that is on an optimal path. The goal is to find an optimal path from column i to u.

A naive approach is to simply recompute the entire block of columns while storing
distances to all states. Here we consider two more efficient methods.

Optimistic block computation Instead of computing the full range of rows for this column,
a first insight is that only rows up to j are needed, since an optimal path to u = ⟨i + B, j⟩
can never go below row j.

Secondly, the path crosses B = 256 columns, and so we optimistically assume that it
will be contained in rows j − 256 − 64 = j − 320 to j. Thus, we first recompute this range
of rows (rounded out to multiples of w = 64) from left to right while storing intermediate
values, as shown in blue in Figure 3b. If the distance to u computed this way equals g∗(u),
there is a shortest path contained within the computed rows and we trace it one state at a
time. Otherwise, we repeatedly try again with double the number of lanes until success. The
exponential search ensures low overhead and good average case performance.

Optimistic diagonal transition traceback (DTT) A second improvement uses the diagonal
transition algorithm backwards from u. We simply run the unmodified algorithm on the
reverse graph covering columns i to i + B and rows 0 to j. Whenever a state v in column i is
reached, say at distance d from u, we check whether g(v) + d = g∗(u), and continue until a v

is found for which this holds. We then know that v lies on a shortest path and we can find
the path from v to u via a usual traceback on the diagonal transition algorithm, as shown in
green in Figure 3b.

As a further optimization, when no suitable v is found after trying all states at distance
≤ g = 40, we abort the DTT and fall back to the block doubling described above. Another
optimization is the WF-adaptive heuristic introduced by WFA [29]: all states that lag more
than x = 10 behind the furthest reaching diagonal are dropped. Lastly, we abort early when
it takes cost > g/2 to cross half the columns. Both g and x are experimentally determined,
see Figure 12 in Appendix A.3.
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(a) Without pre-pruning (b) With pre-pruning

Figure 4 Effect of pre-pruning on chaining seed heuristic (CSH) contours. The left shows contours
and layers of the heuristic at the end of an A*PA alignment, after matches (black diagonals) on the
path have been pruned (red diagonals). The right shows pre-pruned matches in purple and the states
visited during pre-pruning in green. After pre-pruning, almost no off-path matches remain. This
decreases the number of contours, making the heuristic stronger, and simplifies contours, making
the heuristic faster to evaluate.

3.6 A* and pruning
Edlib already uses a simple gap cost heuristic that gives a lower bound on the number of
insertions and deletions on a path from each state to the end. We replace this by the much
stronger gap-chaining seed heuristic (GCSH) introduced in A*PA, with two modifications.

Bulk pruning In A*PA, matches are pruned as soon as a shortest path to their start has
been found. This helps to penalize states before (left of) the match. Each iteration of A*PA2
works left-to-right only, so that pruning of matches does not affect the current iteration.
Thus, we collect all matches to be pruned at the end of each iteration, and update the
contours in one right-to-left sweep. To keep the computational volume valid after pruning,
we ensure that the range of computed rows in each column never shrinks.

Pre-pruning Here we introduce an independent optimization that also applies to the original
A*PA method. Each of the heuristics h introduced in A*PA [13] depends on the set of
matches M between seeds in A and k-mers of B.

Now consider a seed si with an exact match m. The existence of the match is a ‘promise’
that seed si can be crossed for free. (Seeds without match require at least 1 edit.) When m

can not be extended into an alignment of si and si+1 of cost less than 2, we can amortize
this cost over the two seeds and regard m as a ‘false promise’, since crossing the two seeds
takes cost at least 2. Thus, we remove m, making the heuristic more accurate.

More generally, we try to extend each match m into an alignment of seeds si up to the
start of si+q for all q ≤ p = 14. If all extensions have cost ≥ q, then m falsely promised that
si to si+q can be crossed for cost < q and we pre-prune (remove) m.

The extension of each match is done by running the diagonal transition algorithm from
its end. Any furthest reaching states that are at distance ≥ q while at most q seeds have
been covered are dropped, and the match is pre-pruned when no active states are left.

As shown in Figure 4b, the effect is that the number of off-path matches is significantly
reduced. This makes contours simpler and hence faster to initialize, update, and query, and
it increases the value of the heuristic.

Pre-pruning lowers number of remaining matches and allows using k = 12 instead of
k = 15, further improving the heuristic. For k = 12, p = 14 was experimentally determined
to remove nearly all off-path matches, while not taking significant time (Figure 12).
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(a) Simple (b) Sparse

Figure 5 Detail of computed ranges (a) Starting with a fixed range between two green states
(black rectangle), first, the bottom of the to be computed region (blue rectangle) is computed (red
diagonal, with fl(u) > t). Then, the region is rounded out to multiples of w and computed (grey
background). Lastly, the last column is shrunk (red, f(u) > t) until states with f(u) ≤ t are found
(green), that determine the fixed range (black rectangle). The last block has no fixed states in its
right column, so t must be increased. (b) The sparse variant uses much fewer heuristic invocations.

3.7 Determining the rows to compute
For each block, from column i to i+B, we only compute those rows that can possibly contain
states on a path/alignment of cost at most t. Intuitively, we try to ‘trap’ the alignment
inside a wall of states that can not lie on a path of length at most t, i.e., that must have
f∗(u) > t, as can be seen in red in Figure 5a. We determine this range of rows in two steps.

Step 1: Fixed range First, we determine the fixed range at the end of the preced-
ing block. I.e., we find the topmost and bottommost states ⟨i, jstart⟩ and ⟨i, jend⟩ with
f(u) = g(u) + h(u) ≤ t, as shown in green in Figure 5. All in-between states u = ⟨i, j⟩
with jstart ≤ j ≤ jend are then fixed, meaning that the correct distance has been found
and g(u) = g∗(u). One way to find jstart and jend is by simply iterating inward from the
start/end of the computed range and skipping all states with f(u) = g(u) + h(u) > t, as
indicated by the red columns in Figure 5a.

Step 2: End of computed range Then, we find the bottommost state v = ⟨i + B, j′
end⟩

at the end of the to-be-computed block that can possibly lie on a path of length ≤ t. We
then compute rows jstart to j′

end in columns i to i + B, rounding [jstart, j′
end] out to the

previous/next multiple of the word size w = 64.
To determine j′

end, let u = ⟨i, jend⟩ be the bottommost fixed state in column i with
f(u) ≤ t. Let v = ⟨i′, j′⟩ be a state in the current block (i ≤ i′ ≤ i + B) that is strictly below
the diagonal of u. Suppose v lies on a path of length ≤ t. This path must cross column i

in or above u, since states u′ below u have f∗(u′) > t. The distance to v is now at least
minj≤jend

(
g∗(⟨i, j⟩) + cgap(⟨i, j⟩, v)

)
≥ g∗(u) + cgap(u, v), and thus we define

fl(v) := g∗(u) + cgap(u, v) + h(v) ≤ f∗(v)

as a lower bound on the length of the shortest path through v, assuming v is strictly below
the diagonal of u and f∗(v) ≤ t. When fl(v) > t, this implies f∗(v) > t and also f∗(v′) > t

for all v′ below v. The end of the range is now computed by finding the bottommost state v

in each column for which fl is at most t, using the following algorithm:
1. Start with v = ⟨i′, j′⟩ = u = ⟨i, jend⟩.
2. While the below-neighbour v′ = ⟨i′, j′ + 1⟩ of v has fl(v) ≤ t, increment j′.
3. Go to the next column by incrementing i′ and j′ by 1 and repeat step 2, until i′ = i + B.
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(a) First iteration (b) Second iteration

Figure 6 Incremental doubling detail Blue rectangles show the ranges required to be computed,
and grey the computed blocks. Vertical green rectangles show the fixed range at the end of each
block, and green horizontal rectangles a fixed row jf of states inside some blocks. In both figures the
third block was just computed, in the (a) first and (b) second iteration. The black empty rectangle
indicates the new candidate j′

f for the fixed horizontal region. In (a), the computation is split into
two parts, above and below j′

f . In (b), the computation is split into three parts (dark grey): above
the reusable region, between the old jf and the new j′

f , and below the new j′
f .

The row j′
end of the last v we find in this way is the bottommost state in column i + B that

can possibly have f(v) ≤ t, and hence this is end of the range we compute.
In Figure 5a, we see that f(v) is evaluated at a diagonal of states just below the bottommost

fixed (green) state u at the end of the preceding black, and that the to-be-computed range
(indicated in blue) includes exactly all states above this diagonal.

Sparse heuristic invocation A drawback of the previous method is that it requires a large
number of calls to f and hence to the heuristic h: roughly one per column and one per row.
In Appendix A.2 we present a sparse version that uses fewer calls to f , as shown in Figure 5b.

3.8 Incremental doubling
When band doubling doubles the threshold from t to 2t, it simply recomputes the distance
to all states. On the other hand, Dijkstra visits states in increasing order of distance, and
the distance to a state is correct (fixed) as soon as a state is expanded.

Indeed, band doubling algorithm can also avoid recomputations. After completing the
iteration for t, it is guaranteed that the distance is fixed to all states that satisfy f(u) ≤ t.
In fact, a stronger result holds: in any column, the distance is fixed for all states between the
topmost and bottommost state in that column with f(u) ≤ t.

In each block, we would like to skip some rows preceding jend, the end of the fixed range
in its first column. To be able to do this, we must store the horizontal differences along
row jend so that we can continue from there in the next iteration. In practice, we choose
row jf (for fixed) as the last row at a lane boundary before jend, as indicated in Figure 6
by a horizontal black rectangle. In the first iteration (Figure 6a), reusing values is not yet
possible, so the computation of the block is split into two parts: one above jf , to extract the
horizontal differences along row jf , and the remainder below jf .

In the second and further iterations (Figure 6b), the values at jf are reused and each
block is split into three parts. The first part computes all lanes covering states before the
start of the fixed range (green column) at the end of the block. We then skip the lanes up to
the previous jf , since the values at both the bottom and right of this region are already fixed.
Then, we compute the lanes between the old jf and its new value j′

f . Lastly we compute the
lanes from j′

f to the end.
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4 Results

A*PA2 is available at github.com/RagnarGrootKoerkamp/astar-pairwise-aligner and
written in Rust. We compare it against other aligners on real datasets, report the impact of
the individual techniques we introduced, and measure time and memory usage.

4.1 Setup
Datasets We benchmark on five datasets containing real sequences of varying length and
divergence, as listed in detail in Table 1 in Appendix A.3. They can be downloaded from
github.com/pairwise-alignment/pa-bench/releases/tag/datasets.

Four datasets containing Oxford Nanopore Technologies (ONT) reads are reused from the
WFA, BiWFA, and A*PA evaluations [29, 28, 13]. Of these, two ‘>500 kbp’ and ‘>500 kbp
with genetic variation’ datasets have divergence (error rate, or more precisely, edit distance
divided by length) 6 − 7%, while two ‘1 kbp’ and ‘10 kbp’ datasets are filtered for sequences
of length <1 kbp and <50 kbp and have average divergence 11% and average sequence length
800 bp and 11 kbp.

A SARS-CoV-2 dataset was newly generated by downloading 500 MB of viral sequences
from the COVID-19 Data Portal, covid19dataportal.org [15], filtering out non-ACTG
characters, and selecting 10000 random pairs. This dataset has average divergence 1.5% and
average length 30 kbp.

For each set, we sorted all sequence pairs by edit distance and split them into 50 files
each containing multiple pairs, so that the first file contains the 2% of pairs with the lowest
divergence. Reported runtimes are averaged over the sequences in each file.

Algorithms and aligners We benchmark A*PA2 against state-of-the-art exact align-
ers Edlib, BiWFA, and A*PA. We further compare against the approximate aligners
WFA-Adaptive [29] and Block Aligner. For WFA-Adaptive we use default parameters
(10, 50, 10), dropping states that lag behind by more than 50. For Block Aligner we use
block sizes from 0.1% to 1% of the input size. Block Aligner only supports affine costs
so we use gap-open cost 1 instead of 0.

We compare two versions of A*PA2. A*PA2-simple uses all engineering optimizations
(bitpacking, SIMD, blocks, new traceback) and uses the simple gap-heuristic. A*PA2-full
additionally uses more complicated techniques: incremental-doubling, and the gap-chaining
seed heuristic introduced by A*PA with pre-pruning.

Parameters For A*PA2, we fix block size B = 256. For A*PA2-full, we use the gap-
chaining seed heuristic (GCSH) of A*PA with exact matches and seed length k = 12. We
pre-prune matches by looking ahead up to p = 14 seeds. Parameters were determined
experimentally, see Figure 12 in Appendix A.3 for a comparison. For most parameters, the
runtime is not very sensitive to the exact value. For A*PA, we use the original inexact
matches with seed length k = 15 by default, and only change this for the low-divergence
SARS-CoV-2 dataset and 4% divergence synthetic data, where we use exact matches (r = 1).

Execution We ran all benchmarks using PaBench (github.com/pairwise-alignment/
pa-bench) on Arch Linux on an Intel Core i7-10750H with 64GB of memory and 6 cores,
with hyper-threading disabled, frequency boost disabled, and CPU power saving features
disabled. The CPU frequency is fixed to 3.6GHz and we run 1 single-threaded job at a time
with niceness −20. Reported running times are the average wall-clock time per alignment
and exclude the time to read data from disk for more stable measurements. For A*PA and
A*PA2-full, reported times do include the time to find matches and initialize the heuristic.

https://github.com/RagnarGrootKoerkamp/astar-pairwise-aligner
https://github.com/pairwise-alignment/pa-bench/releases/tag/datasets
https://www.covid19dataportal.org/
https://github.com/pairwise-alignment/pa-bench
https://github.com/pairwise-alignment/pa-bench
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Figure 7 Runtime comparison (log) Each dot shows the running time of a single alignment
(right two plots) or the average runtime over 2% of the input pairs (left three plots). Box plots
show the three quartiles, and the red circled dot shows the average running time over all alignments.
For A*PA, exact matches are used for the SARS-CoV-2 dataset. Some A*PA alignments ≥ 10 kbp
time out, and the shown average is a lower bound on the true average. Approximate aligners WFA
Adaptive and Block Aligner are indicated with triangles. On the >500 kbp reads, A*PA2-full is
19× faster than other exact methods.

4.2 Comparison with other aligners

Speedup on real data Figure 7 compares the running time of aligners on real datasets.
Table 2 in Appendix A.3 contains a corresponding table. On the >500 kbp ONT reads,
A*PA2-full is 19× faster than Edlib, BiWFA, and A*PA in average running time, and
using the gap-chaining seed heuristic in A*PA2-full provides 3× speedup over A*PA2-simple.

On shorter sequences, the overhead of initializing the heuristic in A*PA2-full is large,
and A*PA2-simple is faster. For the 10 kbp dataset, A*PA2-simple is 5.6× faster than other
exact methods. For the shortest (1 kbp ONT reads) and most similar sequences (SARS-CoV-2
with 1% divergence), BiWFA is usually faster than Edlib and A*PA2-simple. In these
cases, the overhead of using 256 wide blocks is relatively large compared to the edit distance
s ≤ 500 in combination with BiWFA’s O(s2 + n) expected running time.

Comparison with approximate aligners For the smallest datasets, BiWFA is about as fast
as the approximate methods WFA Adaptive and Block Aligner, while for the largest
datasets A*PA2-full is significantly faster. Only on the dataset of 10 kbp ONT reads is
Block Aligner 1.6× faster than A*PA2, but it only finds the correct edit distance for
53% of the alignments. All accuracy numbers can be found in Table 3 in Appendix A.3.

Scaling with length Figures 8a and 8b compare the runtime of aligners on synthetic
random sequences of increasing length and constant uniform divergence. BiWFA’s runtime
is quadratic and is fast for sequences up to 3000 bp. As expected, A*PA2-simple has very
similar scaling to Edlib but is faster by a constant factor around 7.5×. A*PA2-full includes
the gap-chaining seed heuristic used by A*PA, resulting in comparable speed and near-linear
scaling for both of them when d = 4%. For more divergent sequences, A*PA2-full is faster
than A*PA since initializing the A*PA heuristic with inexact matches is relatively slow.
The reason that A*PA2-full is slower than A*PA for sequences of length 10 Mbp is that
A*PA2-full uses shorter seed length k = 12 instead of k = 15. In most cases, pre-pruning is
fast enough to handle the extra matches this causes, but when n approaches 412 ≈ 16 · 106,
this becomes a bottleneck.

WABI 2024
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(a) Scaling with length (d = 4%) (b) Scaling with length (d = 12%) (c) Scaling with divergence

Figure 8 Runtime comparison on synthetic data (a)(b) Log-log plot of average running time
of aligners on synthetic sequences of increasing length with 4% divergence and 12% divergence.
A*PA uses exact matches (indicated by r = 1) for d = 4% and inexact matches for d = 12%. For
sequences of length n, averages are over 107/n pairs. Lines are fitted in the log-log domain. The
region between linear and quadratic growth is shaded in grey. (c) Average running time of aligners
over 10 sequences of length 100 kbp with varying uniform divergence.

Scaling with divergence Figure 8c compares the runtime of aligners on synthetic sequences
of increasing divergence. BiWFA’s runtime grows quadratically, while Edlib grows linearly
and jumps up each time another doubling of the threshold is required. A*PA is fast until the
maximum potential is reached at 6% resp. 12% and then becomes very slow. A*PA2-simple
behaves similar to Edlib and jumps up each time another doubling of the threshold is
needed, but is around 8× faster. A*PA2-full outperforms BiWFA for divergence ≥ 2% and
A*PA for divergence ≥ 4%. The runtime of A*PA2-full is near-constant up to divergence
7% due to the gap-chaining seed heuristic which can correct for up to 1/k = 1/12 = 8.3%
of divergence, while A*PA2-simple starts to slow down at lower divergence. The graph
of A*PA2 has a negative slope when the number of doublings is fixed, because too low
thresholds are rejected more quickly when divergence is higher.

Memory usage of A*PA2 on >500 kbp sequences is at most 200 MB and only 30 MB in
median, down from 6868 MB and 158 MB for A*PA. On other datasets and for Edlib and
BiWFA, memory usage is at most 11 MB, and usually < 1 MB (Table 4 in Appendix A.3).

4.3 Effects of methods
Figure 9 shows the effect of one-by-one adding improvements to A*PA2 on >500 kbp long
sequences, roughly in order of importance, starting with Ukkonen’s band doubling method
using Myers’ bitpacking. Figure 11 in Appendix A.3 instead shows the effect of removing each
improvement from the final method. We first change to the g∗(u) + cgap(u, vt) computational
volume (+A*), making it comparable to Edlib. Then we process blocks of 256 columns at
a time and only store differences at block boundaries, giving 2.5× speedup. Adding SIMD
gives another 2.7× speedup, and instruction level parallelism (ILP) provides a further small
improvement. The diagonal transition traceback (DTT) and sparse heuristic computation
do not improve performance of A*PA2-simple much on long sequences, but their removal
can be seen to slow it down for shorter sequences in the ablation (Figure 11). Incremental
doubling (ID), the gap-chaining seed heuristic (GCSH), pre-pruning (PP), and the pruning
of A*PA give another 3× speedup on average and 4× speedup in the first quantile.

Figure 13 in Appendix A.3 shows that A*PA2 typically spends most of its time computing
blocks. For short 1 kbp long sequences, half the time is spent on traceback, and for the
>500 kbp sequences, A*PA2-full spends around a quarter of time on initializing the heuristic.
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Figure 9 Effect of adding features Box plots showing the performance improvements of A*PA2
on long sequences when incrementally adding new methods one-by-one. A*PA2-simple corresponds
to the middle red columns, and A*PA2-full corresponds to the rightmost blue columns.

5 Discussion

We have shown that by incorporating many existing techniques and by writing highly
optimized code, A*PA2 achieves 19× speedup over other methods when aligning >500 kbp
ONT reads with 6% divergence, 5.6× speedup for sequences of average length 11 kbp, and only
a slight slowdown over BiWFA for very short (<1 kbp) and very similar (<2% divergence)
sequences. A*PA2’s speed is also comparable to approximate aligners, and is faster for
long sequences, thereby nearly closing the gap between approximate and exact methods.
A*PA2-simple has similar O(ns) scaling behaviour as Edlib in both length and divergence,
but with a 6× to 8× better constant. A*PA2-full achieves the best of both: the near-linear
scaling with length of A*PA when divergence is small, and the efficiency of Edlib.

Limitations
1. The main limitation of A*PA2-full is that the heuristic requires finding all matches

between the two input sequences, which can take long compared to the alignment itself.
2. For sequences with divergence <2%, the diagonal transition algorithm (BiWFA) is very

sparse, and computing full blocks in A*PA2 has considerable overhead.
3. The new sequence profile only supports sequences over alphabet size 4, so DNA sequences

containing e.g. N characters must either be cleaned or fall back to a slower profile.

Future work
1. When divergence is very low (< 1%), the block-based DP is relatively slow, and perform-

ance could be improved by using A* with diagonal transition, possibly per block.
2. Currently A*PA2 is completely unaware of the type of sequences it aligns. Using an

upper bound on the edit distance, either known or found using a non-exact method, could
avoid trying overly large thresholds and smoothen the curve in Figure 8c.

3. It should be possible to extend A*PA2 to semi-global alignment, and to incorporate the
ideas of A*PA and A*PA2 back into the Astarix’ sequence-to-graph alignment.

4. Extending A*PA2 to affine cost models should also be possible. This will require
adjusting the gap-chaining seed heuristic, and changing the computation of the blocks
from a bitpacking approach to one of the SIMD-based methods for affine costs.

5. Lastly, TALCO [51] provides an interesting idea: it may be possible start traceback
while still computing blocks, thereby saving memory.
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A Appendix

A.1 Bitpacking
Figure 10a shows a SIMD version of Myers’ bitpacking and Figure 10b shows the method
for edit distance described in the supplement of BitPAl [27]. Both methods require 20
instructions.

Both methods are usually reported to use fewer than 20 instructions, but this excludes the
shifting out of the bottom horizontal difference (four instructions) and the initialization of
the carry for BitPAl (one operation). We require these additional outputs/inputs since we
want to align multiple 64bit lanes below each other, and the horizontal difference in between
must be carried through.

pub fn compute_block_simd_myers(
// 0 or 1. Indicates -1 difference on top.
hp0: &mut Simd<u64, 4>,
// 0 or 1. Indicates -1 difference on top.
hm0: &mut Simd<u64, 4>,
// 64-bit indicator of +1 differences on left.
vp: &mut Simd<u64, 4>,
// 64-bit indicator of -1 differences on left.
vm: &mut Simd<u64, 4>,
// 64-bit indicator of chars equal to top char.
eq: Simd<u64, 4>,

) {
let vx = eq | *vm;
let eq = eq | *hm0;
// The addition carries information between rows.
let hx = (((eq & *vp) + *vp) ^ *vp) | eq;
let hp = *vm | !(hx | *vp);
let hm = *vp & hx;
// Extract the high bit as bottom difference.
let right_shift = Simd::<u64, 4>::splat(63);
let hpw = hp >> right_shift;
let hmw = hm >> right_shift;
// Insert the top horizontal difference.
let left_shift = Simd::<u64, 4>::splat(1);
let hp = (hp << left_shift) | *hp0;
let hm = (hm << left_shift) | *hm0;
// Update the input-output parameters.
*hp0 = hpw;
*hm0 = hmw;
*vp = hm | !(vx | hp);
*vm = hp & vx;

}

(a) Myers’ bitpacking

pub fn compute_block_simd_bitpal(
// 0 or 1. Indicates 0 difference on top.
hz0: &mut Simd<u64, 4>,
// 0 or 1. Indicates -1 difference on top.
hp0: &mut Simd<u64, 4>,
// 64-bit indicator of -1 differences on left.
vm: &mut Simd<u64, 4>,
// 64-bit indicator of -1 and 0 differences on left.
vmz: &mut Simd<u64, 4>,
// 64-bit indicator of chars equal to top char.
eq: Simd<u64, 4>,

) {
let eq = eq | *vm;
let ris = !eq;
let notmi = ris | *vmz;
let carry = *hp0 | *hz0;
// The addition carries info between rows.
let masksum = (notmi + *vmz + carry) & ris;
let hz = masksum ^ notmi ^ *vm;
let hp = *vm | (masksum & *vmz);
// Extract the high bit as bottom difference.
let right_shift = Simd::<u64, 4>::splat(63);
let hzw = hz >> right_shift;
let hpw = hp >> right_shift;
// Insert the top horizontal difference.
let left_shift = Simd::<u64, 4>::splat(1);
let hz = (hz << left_shift) | *hz0;
let hp = (hp << left_shift) | *hp0;
// Update the input-output parameters.
*hz0 = hzw;
*hp0 = hpw;
*vm = eq & hp;
*vmz = hp | (eq & hz);

}

(b) Bitpal’s bitpacking

Figure 10 Bitpacking Rust code for SIMD version of Myers’ and Bitpal’s bitpacking algorithms
that both take 20 instructions.
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A.2 Sparse heuristic invocation
Here we explain how to compute the fixed range and the range of rows to compute with
significantly fewer evaluations of the heuristic than the simpler method of Section 3.7. We
first state two very similar lemmas, and then give the updated steps.

▶ Lemma 1. When h is admissible and f(u) > t + 2D, then f∗(u′) > t for all u′ within
distance d(u, u′) ≤ D from u.

Proof. Since adjacent states differ in distance by {−1, 0, +1}, we have g(u′) ≥ g(u) −
d(u, u′) ≥ g(u) − D and h∗(u′) ≥ h∗(u) − d(u, u′) ≥ h∗(u) − D. Now suppose that f∗(u′) ≤ t.
Then u′ is fixed and we have g(u′) = g∗(u′), and since h is admissible h(u) ≤ h∗(u). Thus:

t + 2D < f(u) = g(u) + h(u)
≤ g(u) + h∗(u) ≤ g(u′) + h∗(u′) + 2D

= g∗(u′) + h∗(u′) + 2D = f∗(u′) + 2D ≤ t + 2D.

This is a contradiction, so we must have f∗(u′) > t, as required. ◀

▶ Lemma 2. When h is admissible, v is below the diagonal of a computed state u, and
fl(v) = g∗(u) + cgap(u, v) + h(v) > t + 2D, then f∗(v′) > t when v has distance d(v, v′) ≤ D

from u.

Proof. We have cgap(u, v′) ≥ cgap(u, v) − d(v, v′) ≥ cgap(u, v) − D, and h∗(v′) ≥ h∗(v) − D.
Now suppose that f∗(v′) ≤ t. Then we know that g∗(v) ≥ g∗(u) + cgap(u, v), and we still
have h(v) ≤ h∗(v), g∗(v′) ≥ g∗(v) − D, and h∗(v′) ≥ h∗(v) − D. It follows that

t + 2D < fl(v) = g∗(u) + cgap(u, v) + h(v)
≤ g∗(v) + h∗(v)
≤ g∗(v′) + h∗(v′) + 2D = f∗(v′) ≤ t + 2D,

which is a contradiction, so we conclude that f∗(v′) > t, as required. ◀

Step 1’: Sparse fixed range To find the first row jstart with f(⟨i, jstart⟩) ≤ t, start
with j = rstart, and increment j by ⌈(f(v) − t)/2⌉ as long as f(v) > t, since none of the
intermediate states can lie on a path of length ≤ t by Lemma 1. The last row is found in
the same way by going up from rend. As seen in Figure 5b, this sparse variant significantly
reduces the number of evaluations of the heuristic in the right-most columns of each block.

Step 2’: Sparse end of computed range Instead of considering one column at a time, we
now first make a big jump down and then jump to the right.
1. Start with v = ⟨i′, j′⟩ = u + ⟨1, B + 1⟩ = ⟨i + 1, jend + B + 1⟩.
2. If fl(v) ≤ t, increase j′ (go down) by 8.
3. If fl(v) > t, increase i′ (go right) by ⌈(fl(v) − t)/2⌉, but do not exceed column i + B.
4. Repeat from step 2, until i′ = i + B.
5. While fl(v) > t, decrease j′ (go up) by ⌈(fl(v) − t)/2⌉, but do not go above the diagonal

of u.
The resulting v is again the bottommost state in column i + B that can potentially have
f(t) ≤ t, and its row is the last row that will be computed.

A.3 Further results
See Figures 11–14 and Tables 1–4.
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Figure 11 Ablation Box plots showing how the performance of A*PA2-simple (left, middle)
and A*PA2-full (right) changes when removing (-) or adding (+) features. ILP: instruction level
parallelims, ID: incremental doubling, Sh: sparse heuristic evaluation, DTT: diagonal transition
traceback, PP: pre-pruning. Note that adding incremental doubling to A*PA2-simple slows down
simple alignments, while A*PA2-full benefits from it for larger alignments.

Figure 12 Changing parameters Runtime of A*PA2-simple (left, middle) and A*PA2-full
(right) with one parameter modified. Default parameters are seed length k = 12, pre-pruning
look-ahead p = 14, growth factor f = 2, block size B = 256, max DTT traceback cost g = 40, and
dropping diagonals that lag x = 10 behind during traceback. Running time is not very sensitive
with regards to most parameters. Of note are using inexact matches (r = 2) for the heuristic, which
take significantly longer to find, larger seed length k, which decreases the strength of the heuristic,
and smaller block sizes (B = 128 and B = 64), which induce more overhead.

Figure 13 Runtime profile of A*PA2 using A*PA2-simple for short sequences and A*PA2-full
for the two rightmost >500 kbp datasets. Each column corresponds to a (set of) alignment(s), which
are sorted by total runtime. Overhead is the part of the runtime not measured in one of the other
parts and includes the time to build the profile. For >500 kbp long sequences, A*PA2-full spends
most of its time computing blocks, followed by the initialization of the heuristic. For very short
sequences of 1 kbp, up to half the time is spent on tracing an optimal alignment.
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Length [ kbp] Divergence [%] Max gap [ kbp]

Dataset Source Cnt min mean max min mean max mean max

SARS-CoV-2 A*PA2 10 000 27 30 30 0.0 1.5 12.8 0.1 1.0
ONT 1 kbp WFA 12 500 0.04 0.8 1.1 0.0 10.4 22.5 0.01 0.1
ONT 10 kbp BiWFA 10 000 0.2 11 50 3.0 11.6 19.2 0.07 3.4
ONT >500 kbp A*PA 50 500 594 849 2.7 6.1 16.7 0.1 1.3
ONT >500 kbp + gv BiWFA 48 502 632 1053 4.3 7.2 18.2 1.9 42

Table 1 Dataset statistics All but the first dataset are ONT reads. The dataset with genetic
variation (gv) also includes long gaps, while the SARS-CoV-2 dataset stands out for having only 1.5%
divergence on average. Cnt: number of sequence pairs. Max gap: longest gap in the reconstructed
alignment.

SARS-CoV-2 ONT

Aligner [ms] 1 kbp [ms] 10 kbp [ms] >500 kbp [s] >500 kbp + gv [s]

Edlib 11.14 0.110 8.0 3.74 5.20
BiWFA 1.13 0.042 9.3 4.47 6.96
A*PA 6.25 0.514 >190.1 >14.01 >12.92

WFA-Adaptive 0.85 0.038 3.0 1.04 0.81
Block Aligner 2.35 0.038 0.9 0.63 0.68

A*PA2-simple 0.89 0.052 1.4 0.58 0.78
A*PA2-full 2.00 0.083 1.7 0.20 0.27

Speedup [×] 1.3 0.81 5.6 18.8 19.0
Table 2 Average runtime per sequence of each aligner on each dataset. Cells marked with >

are a lower bound due to timeouts. Speedup is reported as the fastest A*PA2 variant compared to
the fastest of Edlib, BiWFA, and A*PA. WFA-Adaptive and Block Aligner are approximate
aligners.

SARS-CoV-2 ONT

Aligner 1 kbp 10 kbp >500 kbp >500 kbp + gv

WFA-Adaptive 92% 93% 49% 60% 4%
Block Aligner 34% 85% 53% 96% 50%

Table 3 Percentage of correctly aligned reads by approximate aligners. The accuracy of WFA-
Adaptive drops a lot for the >500 kbp dataset with genetic variation, since these alignments contain
gaps of thousands of basepairs, much larger than the 50 bp cutoff after which trailing diagonals are
dropped.

WABI 2024



17:24 A*PA2: Up to 19× faster exact global alignment

Memory [ MB] SARS-CoV-2 ONT

1 kbp 10 kbp >500 kbp >500 kbp + gv

Aligner median max median max median max median max median max

Edlib 0 0 0 0 0 0 0 0 0 0
BiWFA 0 0 0 0 0 0 4 11 0 2
A*PA 0 236 0 0 228 873 84 3453 158 6868

WFA-Adaptive 0 11 0 0 0 0 0 0 0 0
Block Aligner 0 16 0 0 0 3 583 1189 610 2171

A*PA2 simple 2 5 0 0 4 6 0 55 2 164
A*PA2 full 0 0 0 0 0 0 30 82 6 141

Table 4 Memory usage of aligners, measured as the increase in max_rss before and after aligning
a pair of sequences.

(a) Dijkstra (b) WFA (c) A*PA

(d) Ukkonen (e) Edlib (f) A*PA2
-simple

(g) A*PA2
-full

Figure 14 Alignment of two sequences of length 10 kbp with 17% divergence using the same
methods as in Figure 1. The optimal alignment contains similar regions, noisy regions, indels, and
repeats (shown by the black matches and red pruned matches in (c)). A*PA computes a subset of
the states of WFA. A*PA2-full computes more states than A*PA, but is more efficient.
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