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—— Abstract

Motivation. Given a string S, a minimizer scheme is an algorithm defined by a triple (k, w, O)
that samples a subset of k-mers (k-long substrings) from a string S. Specifically, it samples the
smallest k-mer according to the order O from each window of w consecutive k-mers in S. Because
consecutive windows can sample the same k-mer, the set of the sampled k-mers is typically much
smaller than S. More generally, we consider substring sampling algorithms that respect a window
guarantee: at least one k-mer must be sampled from every window of w consecutive k-mers. As a
sampled k-mer is uniquely identified by its absolute position in S, we can define the density of a
sampling algorithm as the fraction of distinct sampled positions. Good methods have low density
which, by respecting the window guarantee, is lower bounded by 1/w. It is however difficult to
design a sequence-agnostic algorithm with provably optimal density. In practice, the order O is
usually implemented using a pseudo-random hash function to obtain the so-called random minimizer.
This scheme is simple to implement, very fast to compute even in streaming fashion, and easy to
analyze. However, its density is almost a factor of 2 away from the lower bound for large windows.

Methods. In this work we introduce mod-sampling, a two-step sampling algorithm to obtain new
minimizer schemes. Given a (small) parameter ¢, the mod-sampling algorithm finds the position p of
the smallest t-mer in a window. It then samples the k-mer at position p mod w. The lr-minimizer
uses t = k — w and the mod-minimizer uses t = k (mod w).

Results. These new schemes have provably lower density than random minimizers and other
schemes when k is large compared to w, while being as fast to compute. Importantly, the mod-
minimizer achieves optimal density when k& — oco. Although the mod-minimizer is not the first
method to achieve optimal density for large k, its proof of optimality is simpler than previous work.

We provide pseudocode for a number of other methods and compare to them. In practice, the
mod-minimizer has considerably lower density than the random minimizer and other state-of-the-art
methods, like closed syncmers and miniception, when k > w. We plugged the mod-minimizer into
SSHash, a k-mer dictionary based on minimizers. For default parameters (w, k) = (11, 21), space
usage decreases by 15% when indexing the whole human genome (GRCh38), while maintaining its
fast query time.
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1 Introduction

The concept of minimizer was simultaneously introduced by Roberts et al. [23] and Schleimer
et al. [26] as an algorithm that samples a small set of k-mers from a string S. More
precisely, a minimizer scheme is defined by a triple (k,w, Q) and works as follows. In
each window of w consecutive k-mers of S, the smallest k-mer according to the order O
is chosen. The collection of distinct (according to their position in S) sampled k-mers
represents a succinct sketch of S, as a minimizer scheme tends to choose the same k-mer
across adjacent windows. This property makes the minimizer highly versatile, facilitating
memory reduction and faster processing in various bioinformatics applications such as
sequence comparison [25], assembly [5], construction of compacted De Bruijn graphs [2, 3],
and sequence indexing [18, 19, 12, 7, 20].

More generally, the effectiveness of a sampling algorithm is measured by its ability to
sample a small number of k-mers from S, while ensuring a window guarantee, that is, at least
one k-mer is sampled from every window. Since a k-mer can be uniquely identified with
its absolute position in S, we informally define the density of a sampling algorithm as the
ratio between the number of distinct sampled positions and the length of S. The lower the
density of a scheme, the better the scheme, as it improves space and time resources for the
aforementioned applications.

The necessity to maintain the window guarantee implies a lower bound on density, which
is 1/w. Achieving optimal performance, i.e., density close to 1/w, is challenging, especially
when the scheme is required to be sequence-agnostic. In fact, practitioners usually resort to
implementing the order O using a pseudo-random hash function to obtain what is known
as the random minimizer scheme. While this scheme is straightforward to implement,
computationally efficient (even in streaming scenarios), and analytically easy to analyze, its
density falls short of the theoretical lower bound by almost a factor of 2 for large w.

Previous research has thus predominantly focused on developing methods that achieve
lower density compared to the random minimizer, both theoretically [11] and practically [4,
17, 27]. However, these methods either pose challenges in terms of analysis and intuitive
understanding [11, 27], or are computationally expensive [17].

Contributions. In this work we introduce mod-sampling, a novel approach to derive min-
imizer schemes. These schemes not only demonstrate provably lower density compared to
random minimizers and other existing schemes but are also fast to compute (even in streaming
fashion), do not require any auxiliary space, and are easy to analyze. Notably, a specific
instantiation of the framework gives a scheme, the mod-minimizer, that achieves optimal
density when k — co. Although Margais et al. [11] were the first to describe a method that
achieves optimal density when & — oo, the proof of optimality of the mod-minimizer is simple
and does not rely on complex machinery as previous approaches. (As a side contribution, we
review such previous approaches using a consistent notation and we simplify their exposition.)
The mod-minimizer has lower density than the method by Marcais et al. for practical values
of k and w and converges to 1/w faster.
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Our theoretical analysis matches empirical performance on both synthetic and real-
world strings: the mod-minimizer significantly outperforms the random minimizer and other
state-of-the-art methods like closed syncmers [4] and miniception [27] in practice, given the
appropriate choice of parameters. We integrated the mod-minimizer into SSHash [18, 19], a
k-mer dictionary based on minimizers, resulting in a substantial reduction in space usage
(14-15%) while maintaining its fast query times. Both C++ and Rust implementations of
the proposed schemes are publicly available on GitHub.

2 Notation, preliminary definitions, and problem statement

We report here the notation used throughout the paper, along with some useful definitions.

Notation. Let [n] := {0,...,n — 1}, for any n € N. We fix an alphabet ¥ = [o] of size
o =200, Let S € ¥* be a string. We refer to S[i..j) as its sub-string of length j — i
starting at index ¢ and ending at index j (excluded). When j — i = k for some k > 1, we call
S[i..j) a k-mer of S. In the following, let w > 0 be an integer, so that any string of length
¢ =w+k —1 defines a window W of w consecutive k-mers. We refer to w as the size of
the window. (Whenever we use the term “window” in the following, we implicitly assume
that to be relative to an hypothetical long string S.) It follows that each k-mer in W can be
uniquely identified with an integer in [w], corresponding to its starting position in W. We
say that two windows W and W' are consecutive when W([1..£) = W'[0..0 — 1).

We write a mod m for the remainder of a after division by m and a = b (mod m) to say
that a and b have the same remainder modulo m.

» Definition 1 (Order). An order Oy on k-mers is a function Oy : ¥¥ — R, such that
x <o, y if and only if Ox(x) < Or(y).

We do not necessarily require Oy to be random, although practitioners often use a
(pseudo-)random hash function h : ©*¥ — [U] to define the order, where [U] is a sufficiently
large range, like U = 2128, We therefore make the standard assumption [1, 21] that h is
drawn from a family of fully random hash functions that can be evaluated in O(1) on a
machine word.

Hashing k-mers. Since o = 290 it follows that any k-mer z € X* fits in O(k) words
and h(x) is computed in O(k) time. Furthermore, using a rolling hash function [13], we
can compute w hashes for the w consecutive k-mers in a window in O(w + k — 1) rather
than the naive O(wk). We implicitly assume this linear bound hereafter when discussing the
complexities of the algorithms.

Sampling functions. We now define a hierarchy of sampling functions.

» Definition 2 (Local scheme). A local scheme is a function f : S*T*~1 — [w] that, given a
window W, selects the k-mer starting at position f(W) in W. That is, the sampled k-mer is
WIf(W)..f(W)+ k).

» Definition 3 (Forward scheme). A local scheme f is a forward scheme when for any two
consecutive windows W and W' it holds that f(W) < f(W') + 1.

Forward schemes have the property that as the window W slides through an input string
S, the position in S of the selected k-mer never decreases. This is, for example, the case for
minimizers as defined below.
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» Definition 4 (Minimizer scheme). A minimizer scheme is defined by a total order Oy, on
k-mers and selects the leftmost minimal k-mer in a window W, which is called the minimizer:

f(W) ;= argmin O (Wli..i + k)).

i€ [w]

» Definition 5 (Random minimizer). The random minimizer is the minimizer scheme R
according to a uniform random total order Q.

The performance metric we focus on in this work is the density of a scheme.

» Definition 6 (Density). Given a string S of length n, let W; := S[i..i+£) fori € [n—£+1].
A sampling function f selects the k-mers starting at positions {i + f(W;) | i € [n — £+ 1]}.
The particular density of f on S is |{i+ f(W;) |i € [n— €+ 1]}| / (n — k+1). The density
d(f) of f is defined as the expected particular density on a string S consisting of i.i.d. random
characters of X in the limit where n — oco.

We remark that Marcais et al. [11] give a definition of density in terms of particular
density on circular strings (which we do not define here for brevity). For n — oo, their
definition and Definition 6 are equivalent. Hence, we use finite but sufficiently-long random
strings to approximate the density in this work.

Random minimizers have been the most popular choice by practitioners because they
are simple to implement and offer overall good performance in terms of sampling speed and
density. The density of random minimizers is d(R) = 2/(w + 1) [26]. However, there are
schemes with lower density. Let the sets of all local schemes, all forward schemes, and all
minimizer schemes be denoted by £, F, and M respectively. All minimizer schemes are
forward [11], and by definition all forward schemes are local, so that M C F C L. We write
d(L), d(F), and d(M) for the best possible density of a local, forward, and minimizer scheme
respectively. We have

1/w <d(L) <d(F) <dM) <dR)=2/(w+1).
With these initial remarks in mind, we can precisely state the problem under study here.

» Problem 1 (Pure sampling function problem). Given integers w > 2 and k > 1, implement
a function f: LT — [w] in O(1) space with as low density as possible.

A few considerations about Problem 1 are in order.
By definition, any function solving Problem 1 automatically satisfies the window guarantee
that at least one k-mer is sampled from every w consecutive k-mers from a string.
We require w > 2, since for w = 1 the density of any scheme is just trivially 1.
It is desirable that the evaluation time of f, referred to as sampling time in the following,
is proportional to the number of characters in the window or faster, i.e., O(w + k — 1).

3 Review of previous methods

In this section we review previous methods, in chronological order of proposal. Our focus is
on the algorithmic description of the methods; for a survey about applications of minimizers,
refer to [29]. In particular, we are interested in methods that solve Problem 1, i.e., that (1)
can be implemented using constant space and (2) have a window guarantee. These methods
are: the random minimizer [23, 26], the “rotational” minimizer [11], the miniception [27],
the closed syncmer [4], and the minimum decycling set based minimizers [17].
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Algorithm 1 Pseudocode for the random minimizer algorithm.

1: function MINIMIZER(W, w, k, Oy,)
2 Omin = +00

3 p=20

4: fori=0;i<w;i=i+1do
5: 0= 0r(Wli..i + k))

6 if 0 < oypin then

7
8

9

Omin = O
p=1

return p

In the following, we describe these approaches and give concise pseudocode to aid
concrete implementations. Although the pseudocode illustrates how the pure function
f o xwtk=l 5 [y] from Problem 1 can be implemented, we point out that each of the
methods can be implemented in a streaming fashion as well, that is, they can be implemented
so that it takes O(m) amortized time to compute f for m consecutive windows. (Our concrete
implementations support both stateless and streaming sampling.)

Random minimizer. As per Definition 4, the minimizer of a window is the smallest k-mer
according to some order. Computing a minimizer thus takes O(w + k — 1) time and the
relevant pseudocode is given in Algorithm 1. As already mentioned, the minimizer has
density 2/(w + 1) when the order Oy is random [26].

Rotational minimizer. Margais et al. [11] present a scheme based on a universal hitting set
(UHS) that approaches density 1/w when w is fixed and k¥ — oco. A UHS is a set of k-mers

such that every string of length £ = w + k — 1 contains at least one k-mer in the UHS [15].

Hence, in the large-k limit, the hierarchy described in Section 2 collapses and minimizers
are as good as forward and local schemes. Assuming that w divides k, for each j € [w]
this scheme considers the sum 9; of characters (with values in [0]) in positions j mod w in
each k-mer in the window. A k-mer is part of the UHS when 9y + 0 > maxc[, ¥; holds
true. In the minimizer scheme, we break ties by falling back to a random minimizer. We
call this scheme the “rotational” minimizer!, inspired by the geometrical rotation of the
(0, -« -, yw—1) embedding. The complexity of Algorithm 2 is O(wk). The pseudocode in
Algorithm 2 is faithful to the description from the original paper [11]. Algorithm 7 in the
Appendix shows our own modified version which gives better results than the original in
practice, by simply preferring k-mers with large 1.

Miniception. The term miniception stands for “minimizer inception” and the method is
based on the idea of using two minimizers with different parameters [27]. Details are given in
Algorithm 3. For a given parameter ¢t < k, the miniception samples the smallest k-mer such
that the position of its smallest contained t-mer is either 0 or £k —¢. When t < k — w, such
charged k-mers may not exist and the smallest k-mer is sampled. In our implementation and
experiments we always use the recommended ¢t = max(k — w,3). When t = k — w + 1, the
density achieved by the miniception can be upper bounded by 1.67/w + o(1/w) when O; and
Oy, are random orders ([27], Theorem 7). In practice, ¢ = k — w is used. The identification

! Guillaume Marcais approved the name (personal communication).
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Algorithm 2 Pseudocode for the rotational minimizer algorithm.

1: function ROTATIONAL-MINIMIZER (W, w, k, Oy,)

2 n=k/w > Assume that w divides k
3 Omin = +00

4: p=0

5: fori=0;i<w;i=1i+1do
6 X =Wli.i+k)
7

8

9

Py = ZZ:_&Xi [q - w] > Sum of characters in positions 0 mod w
forj=1,j<w;j=j+1do
: P = EZ:_&Xi [j+q- w > Sum of characters in positions j mod w

10: if not (¢; <1pp + o) then

11: L L break to line 5

12: 0= 0k(X;) > X; is in UHS

13: if 0 < oypin then

14: Omin = O

15: L | p=1

16: return p

of the smallest t-mer (the call to MINIMIZER(W [i..i + k), wo + 1,¢, O¢) in Algorithm 3) can
be done in streaming fashion, so that the complexity of miniception is linear in the length of
the window, i.e., O(w + k — 1), and not quadratic.

Closed syncmer. For a given parameter ¢t < k, a k-mer is a closed syncmer [4] if its smallest
t-mer is in position 0 or k — t, corresponding to the charged k-mers of miniception. Note that
this definition is “context free”, in that it does not depend on surrounding k-mers. The first
k-mer in a window that is a closed syncmer is sampled, as illustrated in Algorithm 4. As
already noted, the identification of the smallest t-mer in each of the k-mers in a window can
be implemented in linear time, so that the complexity of Algorithm 4 is O(w+ k —1). Closed
syncmers satisfy a window guarantee w when t > k — w. The closed syncmer has a density
of 2/(k —t+1) (assuming a random order on ¢-mers), which is the same as that of a random
minimizer when ¢ = k — w. Syncmers were indeed designed to improve the conservation
metric rather than density compared to minimizers (see the original paper by Edgar [4] for
details). Note that closed syncmers differ from miniception in that they consider all charged
k-mers, as opposed to considering only those that have a small order Oy.

Minimum decycling set. A decycling set is a set of k-mers such that any infinitely long
string contains a k-mer in the set. Mykkeltveit [14] shows how to construct a minimum
decycling set (MDS) using an embedding of k-mers into the complex plane. In particular,
each k-mer X is mapped to a complex point x resulting from the weighted sum of the k-th
complex roots of unity (line 7 of Algorithm 5). In this way, a cyclic rotation of X to the left,
i.e., LEFT-ROTATION(X) = X[1..k) - X[0], corresponds to a rotation in clockwise direction
of the complex number = by an angle of 27/k. The MDS Dy, constructed by Mykkeltveit
consists of those k-mers whose embedding corresponds to the first clockwise rotation having
positive imaginary part, i.e., such that = — 27 /k < arg(x) < 7.
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Algorithm 3 Pseudocode for the miniception algorithm.

1: function MINICEPTION(W, w, k, t, Oy, Oy)
2: w=k—t

3: Omin = (1, +00)

4: p=20

5: fori=0;i<w;t1=i+1do

6: X; = W[Z’L + k‘)

7: p’ = MINIMIZER (X, w’ + 1,¢, Oy)
8: if p’ =0 or p’ = w' then

0 | 0= (0,04(Xy)
10: else
11: L o= (I,Ok(Xi))
12: if 0 < oypin then
13: L Omin = O
14: B p=1i
15: [ returnp

Algorithm 4 Pseudocode for the closed syncmer algorithm.

1: function CLOSED-SYNCMER (W, w, k, O;)

2 t=k—w

3 p=20

4: fori=0;i<w;t=i+1do

5: p/ = MINIMIZER(W [i..i + k), w + 1,¢, Oy)
6 if p =0 or p’ = w then

7 p=1

8 break

9 return p

Pellow et al. [17] use Dy to construct a minimizer order as follows?: all k-mers in Dy, are
smaller than those in ©* \ Dy; within Dy and Yk \ Dy, all k-mers are relatively ordered by a
given Og. They also define a double decycling-set-based order using the symmetric MDS 5k,
the set of k-mers for which —27/k < arg(z) < 0, and then break ties in favour of Dy, first,
then Dy, and lastly 3\ (D UDy). See Algorithm 5, with complexity O(wk).

Other methods. Several related sampling algorithms have been proposed that do not solve
Problem 1. Universal hitting sets that explicitly list k-mers [16, 6] consume more than O(1)
space. Open syncmers [4] and minmers [8] do not consistenly have a small window guarantee.
Bidirectional anchors sample positions rather than k-mers [10, 9]. Lastly, sequence-specific
schemes [28] can achieve very low density but consume more than O(1) space.

2 Pellow et al. [17] consistently write counterclockwise, but both their code and example figure, as well
as Mykkeltveit’s original definition [14], use the first clockwise rotation with positive imaginary part.
Indeed, by “counterclockwise”, they refer to the left cyclic rotation of a k-mer and not to the rotation
of the complex number (personal communication).
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Algorithm 5 Pseudocode for the minimum decycling set algorithm.

function DECYCLING(W, w, k, Of)

1:

2: wy, = e2mi/k > k-th complex root of unity
3: Omin = (2,+00)

4: p=0

5: fori=0;i<w;i=1i+1do

6: X; = W[Z’L + k‘)

7 T = Zf;é X4 w! > Mykkeltveit embedding of the k-mer X;
8: if m#— 27 /k < arg(z) < 7 then > X; belongs to Dy,
9: | 0=1(0,04(Xy)
10: else if —27/k < arg(x) < 0 then > X; belongs to Dy,
11: | o= (1,0k(X)))
12: else
13: | 0= (2,0:(X)))
14: if 0 < oypin then
15: L Omin = O
16: L p=1
17: | returnp

4 New minimizer schemes using modulo sampling

This section presents our main contribution, the mod-minimizer, that has provably lower
density than the random minimizer and achieves optimal density 1/w for large k. To be
precise, when we say “large k” in the following, we mean for w fixed and k — oc.

4.1 Modulo sampling

The mod-minimizer is obtained as a special case of a more general two-step sampling
algorithm, that we name modulo sampling (or just mod-sampling for brevity).

» Definition 7 (Mod-sampling). Let W be a window of size w. Let 1 <t < k be a given
parameter, and O be a total order on t-mers. Suppose that the position of the leftmost
smallest t-mer in W is x. Then, sample the k-mer starting at position x mod w, i.e.

fW) = < argmin Oy (Wli..i + t))) mod w.
i€ w+k—t]

The pseudocode of mod-sampling is given in Algorithm 6. It is straightforward to see that
its complexity is O(w + k — 1). The mod-sampling algorithm defines a two-step approach
where the first step is to find the position of the smallest ¢-mer, followed by the identification
of the actual sampled k-mer via modulo.

From now on, we assume that the order on t-mers O, is a random order.

Why mod-sampling intuitively works well for large k. Before digging into technical details,
we first give some intuition. Let w be fixed and assume that k is large compared to w. For
now we will assume that ¢ is a small constant at most w, and hence also small compared to k.

As long as the minimal ¢-mer in the window remains the same, mod-sampling will either
sample the same k-mer for consecutive windows, or shift the position of the sampled k-mer
by exactly w steps, as can be seen in Figure 1. The window guarantee requires us to sample
at least one every w positions, so locally, this is the best we can do.
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Algorithm 6 The pseudocode for the mod-sampling algorithm (Definition 7).

1: function MOD-SAMPLING(W, w, k, t, O;)
2 Omin = +00

3 z=0

4: fori=0;i<w+k—t;i=i+1do
5: 0= 0;(Wli..i + 1))

6 if 0 < oypin then

7

8

9

L Omin = O
T =1

p =z mod w

10: return p

The sampled k-mer can also change when the minimal ¢t-mer changes. Thus, we would
like the minimal t-mer to change as infrequently as possible. Since t is small compared to
k, the number of ¢t-mers in each window of length f =w+k—1isl —t+1=w+ (k —t),
which is much larger than the number of k-mers, w. This means that minimal ¢-mers are
preserved over longer distances compared to minimal k-mers (i.e., the expected distance is
(w+ (k —t)+ 1)/2 rather than (w + 1)/2, effectively improving over random minimizers).
Now, as we take k& — 0o, we see that the length over which minimal ¢-mers are preserved
also goes to co. This means that in the limit, the density of the mod-sampling scheme is
fully determined by jumps of size w, and hence the density converges to 1/w.

One issue is that as the windows get infinitely long, they will exceed length o? and contain
duplicate t-mers. To mitigate this effect, we let ¢ grow as Q(log(w + k — 1)), which is still
small enough to ensure that the density of minimal ¢-mers converges to 0 (for details, see
Lemma 9).

Depending on the choice of ¢, mod-sampling can yield non-forward schemes as proven in
Lemma 8. Consider the example in the bottom two rows of Figure 2a: w =4, k =6, t = 5,
and let W and W’ be two consecutive windows. Window W may have the smallest ¢-mer in
position 3, giving f(W) = 3 mod 4 = 3, and W’ can introduce a new smaller t-mer in its
last position w+k —t —1 =4, so that f(W')=4mod4=0< f(W)—1=2. We see that
W' samples a k-mer to the left of the one sampled by W and we say that W' introduces a
“backward jump”.

» Lemma 8. Mod-sampling is forward if and only if t = k (mod w) ort =k +1 (mod w).

Proof. Consider two consecutive windows W and W’. Let x be the position of the smallest
t-mer in window W and 2’ that of the smallest t-mer in W’. Mod-sampling is forward when
(x mod w)—1 < (2’ mod w) holds for all z and 2’. Given that the two windows are consecutive,
this trivially holds when x = 0 and when 2’ = x — 1. Thus, the only position z’ that could
violate the forwardness condition is when W’ introduces a new smallest t-mer at position

' = w+k—t—1. In this case, we have 2’ mod w = (w+k—t—1) mod w = (k—t—1) mod w.

The rightmost possible position of the sampled k-mer in W is £ mod w = w — 1. Hence, if
the scheme is forward, then it must hold that (w—1)—1=w—-2 < (k—t—1) mod w. Vice
versa, if w —2 < (k—t — 1) mod w always holds true, then the scheme is forward.

Now, note that (k—t—1)modw >w—-2 <= qu—-2<k—-t—-1<quw < k—quw <
t <k—qw+1 for some 0 < g < |k/w]. In conclusion, the scheme is forward if and only if
t=k—qwort=k—quw+1,ie,whent=%k (mod w)ort =k+1 (mod w). <
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Figure 1 An illustration of mod-sampling for £ = 31, w = 4, and ¢t = 7. Rows indicate consecutive
windows. The thick outlined boxes mark the minimal ¢-mer in each window and the regions
highlighted in red indicate the sampled k-mer. When the minimal t-mer is preserved over many
windows, which is likely when k is large compared to ¢t and w, this ¢t-mer will serve as an “anchor”,
causing the same k-mer to be sampled in blocks of w consecutive windows, effectively sampling one
every w k-mers.

The next theorem gives the expression for the density of a random scheme yielded by the
mod-sampling algorithm, but first we give a useful lemma based on Lemma 9 of [27]. The
proof is in Appendix A.1.

» Lemma 9. For any e >0, if t > (3 +€)log, (¢), the probability that a random window of
L—t+1 t-mers contains two indentical t-mers is o(1/¢). Given that £ = w+k—1, o(1/¢) — 0
for large k.

» Theorem 10. Ift is chosen as in Lemma 9 and Oy is a random order, the density of the
mod-sampling scheme is at most

|E - (1—a)+2

BT (/) 1)
where
0 ift=%k (mod w)
fo, s o
y ey otherwise

and { =w+k—1.

Proof. Consider two consecutive windows W and W’ of length ¢ of a uniform random string.
For forward schemes, the density can then be computed as the probability that a different
k-mer is sampled from W’ than from W, i.e., P[f(W) # f(W’')+1]. However, for non-forward
schemes, we cannot be sure that the k-mer W'[f(W').. f(W') + k) was not already sampled in
any of the previous w — 2 windows because of possible backward jumps. Figure 2 illustrates
some examples. Therefore, in general, P[f(W) # f(W') + 1] only provides an upper bound
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lo|1]2]a]4]s]e]7]s lo|1]2]a]a]s]e]7]s
o|l1]2]a]a]s]e|7]s o|1]|2]a]a]s]|e6|7]s
Wlo|1]2]a[a]s]e]7]s Wlof[1[2]afa[s|s|7]s
W’ |o|1]2fafa|s]|e[7]s] w’ |of1]2|s]a]s]e|7]s]
(@) f(W) > f(W') +1 (b) f(W) < f(W') +1

Figure 2 Examples of doubly sampled k-mers due to backward jumps for w = 4, k = 6, and
t = 5, where the thicker stroke marks the minimal ¢-mer and red boxes indicate the sampled k-mer
from each window. In both these examples, backward jumps cause the k-mer W'[f(W')..f(W') + k)
be sampled twice.

y
Wlo 112|383 45|67 |[8]|9]|10]11
w’ of1|2]|3|4|5|6]|7]8 91011|
(a)

Y Yy
W|O1234567891011 W|01234567891011
W’O1234567891011|W’01234567891011
(b) (c)

y x y
W|01234567891011 W|01234567891011
w’ of1]|2|sfa|s|e|7|s]o]w0][1] W of1]|2]sfa|s|6|7]8]9]10]11]

P’ x’ P x
(d) (e)

Figure 3 The different cases used in the proof of Theorem 10, depending on the position y of
the smallest t-mer in two consecutive windows, W and W’. All examples are for k = 8, w = 5, and
t = 4 except for case (d) where we use t = 3.

to the density of mod-sampling. For brevity, we write Z for the indicator random variable
that a different k-mer is sampled from W’ than from W. The density is then at most
E[Z) = PIF(W) # (W) +1].

Let U be the event that the smallest t-mer according to an order O, in an (¢ + 1)-mer is
unique. By Lemma 9, P[U] = o(1/).

E[Z] =E[Z|U] -P[U| +E[Z|U] -P[U] < 1-0(1/0) + E[Z|U] - 1 = o(1/¢) + E[Z|U].

In the remainder we assume that the minimum is unique to bound E [Z |U ]

We write x and 2’ for the position of the smallest t-mer in W and W’ respectively and,
similarly, we let p = f(W) and p’ = f(W’). Let 0 < y < ¢ — ¢+ 1 be the position of the
smallest t-mer in the union of the two windows. We distinguish between three cases (refer to
Figure 3).

Case y = 0. In this case the first window has its smallest t-mer at z = 0 and hence p = 0,

and the two windows must necessarily sample different k-mers (Figure 3a).

When 0 < y < £ —t + 1, the smallest ¢t-mer is shared between the two windows. We

therefore have p = y mod w and p’ +1 = ((y — 1) mod w) + 1. When y is not a multiple of

w, we have p = p’ + 1 and the same k-mer is sampled (Figure 3b). When y is a multiple

of w, ie., y = w,2w,3w,..., | (¢ —t)/w]w, W' samples a new k-mer exactly w to the

right of the k-mer sampled by W (Figure 3c). There are | (¢ —t)/w] such positions y.

11:11
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When y = £ —t + 1, the smallest ¢t-mer in W’ is not present in W. If p’ = 2’ mod w =
(y— 1) mod w = (£ — t) mod w equals w — 1, then the two windows must necessarily
sample different k-mers (Figure 3d). Otherwise, i.e., if (¢ —¢) mod w < w — 1, the two
windows sample the same k-mer when (({ —t)modw)+1 =p'+1 =p = 2 mod w.
The number of such positions x is [ (£ — t)/w] (one such position is, for example, the
one depicted in yellow in Figure 3e). Because O; is random, x takes each position with
uniform probability 1/(¢ — ¢+ 1). Hence, with probability 1 — 1e=t/wl the two windows

—t+1
sample different k-mers in this case.

Summing up, as the smallest t-mer can be in any position y with probability 1/(¢ —t + 2)
because O; is random, we conclude that E[Z] is at most

o(1/0) + P[f(W) # f(W') +1|U] =

1 | &2 1 1 if ({ —t)modw=w-1
o(1/6) + * N 1-— % otherwise

C—t+2  (—t+2 (—t+2
and, by simplifying, the claim follows. <

The following corollary shows that mod-sampling achieves optimal density for large k.

» Corollary 11. Ift is chosen as in Lemma 9, the mod-sampling scheme has optimal density
for large k, i.e., the density of mod-sampling converges to 1/w as w is fized and k — co.

Proof. First note that density of Theorem 10 can be bounded from above by always taking
x = 0. Since k — oo and ¢t = o(¢), we also have (¢ —t) — 00, so we obtain
LZ;tJ +2 -t

1/0) —— @ — 1/,
f—t+2+o(/€)k—>oo (—t Jw <

The next lemma, proven in Appendix A.4, describes the shape of the density function in
Formula 1 when ¢ and w are fixed, and r <t < k. Although mod-sampling is well defined
for any 1 <t <k, in practice we restrict our attention to ¢t > r for some lower bound r to
mitigate the effect of duplicate t-mers in a window.

» Lemma 12. The density function in Formula 1 has a “sawtooth” shape: for any integer
1 <r <k, it achieves its minimum onr <t < k either int =r or int =r+ ((k—r) mod w).

Consider Figure 4 for some concrete examples. As clearly visible from those examples,
our analysis is tight for forward schemes and, for those cases that are not forward, the
computed density provides an upper bound that is close to the measured density. Only
for very small ¢, like 2 and 3, duplicate t-mers sometimes cause the measured density to
exceed the computed density, but these cases are not relevant in practice. The gap between
computed and measured density is most visible for t = k — 1, and is never more than 1.7% in
the given examples. Furthermore, Lemma 8 together with Lemma 12 imply that the forward
schemes given by mod-sampling minimize the density in Formula 1 and, hence, are more
powerful than its local schemes.

However, we remark that ¢ = k£ mod w could be too small, for example when w = 8 and
k € {32,33,34}. In this case one should then pick ¢ = (k mod w) + w to mitigate the effect
of duplicate t-mers in a window?®. In the light of this analysis, we focus hereafter on the
choice t = k (mod w).

3 QOr, practically, take the value of ¢ that minimizes Formula 1, regardless of whether ¢t = k (mod w) or
not.
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(b) k=31, w=8, 1/w=0.125

Figure 4 Two examples, for different & and w, of the density of mod-sampling. In particular, the
plots show the measured density by varying ¢ (in light blue), calculated over a random string of
one million characters with o = 4 in comparison to the density computed using Formula 1 (in dark
blue), neglecting lower order terms. For r < ¢ < k, the density is minimum at ¢t = k mod w. (Here,
we use r = 2 to avoid degenerate cases.) Black dots indicates the values of ¢ for which the scheme
is forward. As a reference point, the red straight line corresponds to 2/(w + 1), the density of a
random minimizer scheme.

4.2 The mod-minimizer

Now that we have presented the mod-sampling algorithm and analyzed its performance, in
this section we fix some concrete choices of ¢ such that t = k (mod w). For these choices,
the following lemma shows that we obtain minimizer schemes.

» Lemma 13. The mod-sampling algorithm yields a minimizer scheme if t = k (mod w).

Proof. Our proof strategy explicitly defines an order Oy and shows that mod-sampling with
t = k (mod w) corresponds to a minimizer scheme using Oy, i.e., the k-mer sampled by
mod-sampling is the leftmost smallest k-mer according to Oy.

Let O; be the order on t-mers used by mod-sampling. Define the order O (X) of the
k-mer X as the order of its smallest t-mer, chosen among the ¢-mers occurring in positions
that are a multiple of w:

Op(X) = o Ou(XTi.i+1))
where k — ¢ is indeed a multiple of w since t = k (mod w). Now consider a window W
of consecutive k-mers Xy, ..., X,,_1. Since each k-mer starts at a different position in W,
Oy (X;) considers different sets of positions relative to W than O (Xj) for all i # j. However,
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t-mers starting at different positions in W could be identical, i.e., the smallest t-mer of X;
could be identical to that of X;. In case of ties, O, considers the k-mer containing the
leftmost occurrence of the t-mer to be smaller.

Suppose the leftmost smallest t-mer is at position x € [w + k — ¢]. Then mod-sampling
samples the k-mer X, at position p = x mod w. We want to show that X, is the leftmost
smallest k-mer according to O. If Oy(W{z..x 4+ 1)) = o, then

Ok(Xp) = Ox(Wip.p+ k) = min ~ OWlp+j.p+j+t)

= min O,(Wp+jp+j+t)) =o.
je{z—p}
Since o is minimal, then any other k-mer X; must have order > o. Also, since o is the order
of the leftmost occurrence of the smallest ¢-mer, X, is the leftmost smallest k-mer according
to O. |

Our first example, the lr-minimizer, is inspired by syncmers [4] and miniception [27],
and corresponds to the choice t = k — w. By Lemma 13, mod-sampling yields a minimizer
schemes for this choice of ¢ because t = k (mod w). As already mentioned, we must ensure
that ¢ is sufficiently large. Let therefore » > 1 be a lower bound on ¢.

» Definition 14 (Ir-minimizer). When k > w + r, choosing t = k — w gives the lr-minimizer.

The name “Ir” (short for “left-right”) comes from the fact that when the smallest t-mer is
in position 0 < x < w, the t-mer is a prefix of the sampled k-mer (so, they are left aligned),
and when w < z < 2w, the t-mer is a suffix of the sampled k-mer (so, they are right aligned).
The Ir-minimizer is related to both the miniception and the closed syncmer: miniception
subsamples closed syncmers by a random order Oy, whereas the lr-minimizer subsamples
them based on the order O; of the smallest contained ¢-mer, obtaining a lower density.

» Corollary 15. The density of the Ir-minimizer is wigﬁ +o(1/¢).

Proof. Immediate by using ¢ = k — w in Theorem 10 and using Ll + “’T_lJ =1. <
Our second example gives the main result of this work, the mod-minimizer.

» Definition 16 (mod-minimizer). Let r be a (small) integer lower bound on t. For any
k> r, choosing t =1+ ((k — r) mod w) gives the mod-minimizer.

Compared to the Ir-minimizer, the mod-minimizer uses a smaller ¢ and the smallest ¢-mer
of a window is not necessarily a prefix or a suffix of the sampled k-mer. Here, the name is
inspired from the fact that we choose ¢ using the mod function.

Lk;rj+2
w+[%]w+l

» Corollary 17. The density of the mod-minimizer is
1/w for large k and r = [(3 + €)log, (¢)].

+ o(1/€) which tends to

Proof. Immediate from Lemma 9, Theorem 10, and Corollary 11. <

In practice, choosing r slightly above log, (¢) is sufficient to mitigate duplicate t-mers and
achieve good density. For example, in our experiments we use r = 4.

We remark that Margais et al. [11] were the first to describe a method that achieves
optimal density when k — oo, i.e., the “rotational” minimizer reviewed in Section 3. However,
their approach is particularly involved as well as the proof of optimality. On the contrary,
the mod-sampling algorithm is very intuitive (see also Figure 1) and the proof of optimality
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for the mod-minimizer is almost straightforward. Furthermore, as we are going to see in
Section 5, the mod-minimizer performs better than the rotational minimizer for practical
values of k and w, i.e. it converges faster to 1/w compared to the rotational minimizer.

Lastly, it is easy to see that the random minimizer from Definition 4 is obtained by setting
t = k in mod-sampling. As expected, using ¢ = k in Formula 1 gives density 2/(w + 1).

5 Experiments

In this section we compare our new minimizer schemes against the approaches reviewed in
Section 3 to highlight their benefits and discuss potential limitations. For all experiments
we use the C++ implementation of the algorithms, compiled with gcc 11.1.0 under Ubuntu
18.04.6. We use a 128-bit (pseudo) random hash function [22] to implement a random order.

Density. We measure the density of the schemes on a synthetic sequence of 10 million
iid. random characters. We use o0 = 4 (e.g., the DNA alphabet) in all experiments to
highlight the direct link to concrete applications. In practice, fixing r = 4 is sufficiently large,

and we set t = r + ((k — r) mod w) for for miniception, lr-minimizer, and mod-minimizer.

Figure 5 shows the density of the schemes by varying k, for two example values of w. For
sufficiently large k, we consistently have the following order, from best to worst density:
(1) mod-minimizer, (2) rot-minimizer (our own alternative version given in Algorithm 7
in the Appendix), (3) lr-minimizer?, (4) miniception, (5) random minimizer. These plots
confirm the theoretical result of Corollary 11: as k increases, the mod-minimizer approaches
the optimal density 1/w. In particular, the mod-minimizer approaches 1/w faster than the
rot-minimizer by Marcais et al. [11]. The Mykkeltveit MDS based methods of Pellow et
al. [17] only perform well for small k.

Sampling speed. As already noted in Section 3, all considered methods can (and, hence,
should be used) in a streaming way, by taking advantage of overlapping computations across
consecutive windows. Our implementation supports such sampling modality as well. All
methods apart from the decycling methods perform essentially the same when streaming,
taking around 30 to 40 nanoseconds per window on a Intel(R) Xeon(R) Platinum 8276L CPU
clocked at 2.20 GHz, as long as w, k < 100, where around half the time is spent on hashing
k-mers (or ¢t-mers). This is around 10x faster than sampling each window independently.

Indexing k-mer sets with SSHash. As a concrete application of the mod-minimizer, we
plug it into SSHash [18, 19], a recent k-mer dictionary based on minimizers and minimal
perfect hashing [21]. In short, SSHash is a compressed data structure that maintains a set of
k-mers (i.e., a De Bruijn graph) and supports exact membership queries. Minimizers are used
as “seeds” to search the query k-mer into the data structure. Hence in this context, k is the
total number of characters in a window (which we would otherwise write as { = w+k — 1) of

w consecutive m-mers, where m is the chosen minimizer length (otherwise k in this paper).

The reference implementation of SSHash (at https://github.com/jermp/sshash) uses the
random minimizer for simplicity and versatility. We replace it with the mod-minimizer and
observe no slowdown in construction and query time, but better space usage. We report
some example data.

4 Miniception and Ir-minimizer are context-sensitive versions of the closed syncmer [4], and thus we omit
closed syncmers in Figure 5.
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Figure 5 Density by varying k measured on a random string of 10 million characters for o = 4.
Miniception, lr-minimizer, and mod-minimizer all use r = 4 and ¢t = r + ((k — 7) mod w). The
mod-minimizer has the same performance as the random minimizer when k < w as t = k for such
cases, whereas Ir-minimizer requires k > w + r. The original rot-minimizer is only defined when w
divides k. For w = 24 and k > ¢” = 4* = 256, the density of mod-minimizer has small spikes caused
by duplicate t-mers.

We test default parameters £ = 31 and m = 21. On human chromosome 13 random
minimizers yield an SSHash index taking 7.53 bits/k-mer. Using mod-minimizers the space
reduces to 6.41 bits/k-mer (—14.9%). On the whole human genome (GRCh38), space usage
goes down from 8.70 to 7.40 bits/k-mer (—14.9%). On a small pangenome of 100 S. Enterica
genomes [24], space usage goes down from 7.55 to 6.52 bits/k-mer (—13.6%). We also test
one of the largest genome assemblies, the Ambystoma Mezicanum (the “axolotl”), containing
over 18 billion distinct k-mers for &k = 31. Again using m = 21, space goes down from 9.91
to 8.50 bits/k-mer (—14.2%).

Lastly, we point out the main limitation of the mod-minimizer. The mod-minimizer
improves over random minimizers when k& > w, or in SSHash’s notation, when m > (k +1)/2.
In practice, m is typically not larger than 21 because most minimizers already appear once
for m = 21, while k can be up to 63. Thus, the mod-minimizer is only useful in specific cases.
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6 Conclusions and future work

In this work, we introduced a simple framework, mod-sampling, that yields minimizer and local
schemes, and has asymptotically optimal density for large k. Experimental results confirm
our theoretical findings and demonstrate that a specific instantiation, the mod-minimizer,
offers a good reduction in density compared to other methods. The mod-minimizer can
be used as a drop-in replacement for random minimizers, for example, in the SSHash data
structure. Our implementations are publicly available.

Future work could investigate the impact of different orders O, for the t-mers. For
example, combining the decycling set based order [17] with the mod-minimizer seems a
promising idea. This could lead improved density when k ~ w.

Contrary to the large-k case, for which there are asympotically optimal methods, the
small-k case is not yet well understood. It is known that it is not possible to match the trivial
lower bound of 1/w as Margais et al. [11] give an improved lower bound. In Appendix A.2,
we simplify their bound from ﬁ (1.5 + 5= + max(0, [ 222 ])) to ﬁ (1.5 4 ), and show
that it only improves over 1/w when k < (w+1)/2. In Appendix A.3, we slightly improve the
bound to ﬁ and extend it to hold for all local schemes. However, even in the simplest
non-trivial case k = 1, w = 2, the best possible densities of schemes are only known for small
alphabet sizes via exhaustive search, and are larger than the lower bound. Generally, it is
not known whether Marcais’ lower bound is close to the true optimal density, although we
conjecture it is not. Thus, the big open problem is to derive a tight lower bound on the
optimal density of local/forward/minimizer schemes for small k.
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A Appendix

Algorithm 7 Pseudocode for the alternative implementation of the rotational minimizer algorithm
that we also use in the experiments of Section 5.

1: function ROTATIONAL-MINIMIZER(W, w, k, O})
2 Omin = (400, +00)

3 p=20

4: fori=0;i<w;t1=i+1do

5: X; = W[Z’L + k‘)

6 Yo =0

7 for j=0;j<k;j=j+wdo

8 L %o = o + Xilj]

9: 0 = (=1, Ox(X;)) > Maximize the sum o and minimize the order Ok (X;)
10: if 0 < opin then

11: L Omin = O

12: B p=1

13: [ returnp

A.1 The probability of two duplicate t-mers in a window
We prove here the following lemma, adapted from Lemma 9 of [27].

» Lemma 9. For any e >0, if t > (3 + €)log, (¢), the probability that a random window of
{—t+1 t-mers contains two indentical t-mers is o(1/). Given that { = w+k—1, o(1/¢) — 0
for large k.

Proof. Following the proof of Lemma 9 of [27], we first bound the probability that two fixed
t-mers are equal by P and then conclude that the probability that the window contains two
identical t-mers is (¢ —t + 1)? - P by the union bound.

We distinguish two cases. (1) Assume the two fixed t-mers do not share any symbol. In
this case, since the window is made of random symbols, the probability that they are the
same is 0~ ¢ < 1/c@+)108:(0) = 5(1/¢3). (2) Otherwise, they have an overlap. Call z the
sub-string of the window made by the union of the two overlapping t-mers. When the two
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t-mers are offset by d positions, x has length d + ¢ and, if the two ¢-mers are the same, x is a
periodic string with period d. Hence, it is uniquely determined by its first d symbols and
there are o possible strings x for which the two t-mers are identical. The probability that a
random z contains two identical t-mers is therefore 0¢ /0%t = 6=* = 0(1/¢2). In conclusion,
P = 0(1/£3) and the lemma follows via ({ —t+1)2- P < /(2. P =/(?.0(1/3) =0o(1/0). <

A.2 Marcais et al's lower bound is only useful for small k

Margais et al. [11] show the following lower bound for forward schemes:

1 k—w
1.5+ o= + max(0, [£=2]) < d(F).
w+k

Assume that k£ > 2w, so that the floor-term is non-zero. Write k = ¢ - w with ¢ > 2. Then

the lower bound is

L5+ 50 +max(0, [2=%]) 1.5+ 5= + max(0,[c—1]) 1545+ [c—1] 1

w4k N (c+Dw N (c+1) w
056+ +c 1 _05+3+c 1 1
S L T L L L
- (c+1) w™ (e+1) w w
Thus, as soon as the floor term is non-zero, the lower bound is anyway less than the trivial
lower bound of 1/w. Thus, we may as well use the simpler form

L5+ 54
w + 12; ®)
which closely mirrors the bound 12?%“ by Schleimer et al. [26]. Lastly, solving 1312?“’ > %

gives that Margais et al’s bound improves over the trivial lower bound for k < (w + 1)/2.

A.3 Improving and extending Marcais et al’s bound

Here we slightly improve the bound in Formula 3 and generalize it from forward schemes to
local schemes.

» Theorem 18 (New density lower bound). The density of any local scheme satisfies

1.5
— < < .
wik—05 S L) sdF)

Proof. We assume the input is an infinitely long random string S over ¥. The proof makes
use of the setting illustrated in Figure 6, which is as follows. We partition the windows of S
in consecutive groups of 2/ 4+ 1 windows. Let one such group of windows start at position 4,
and consider windows W and W’ starting at positions 7 and ¢’ := ¢ + £ respectively. Also
let W be the window that is the exclusive end of the group, thus starting at position
1" =14+20+1=1 + £+ 1. Note that there is no gap between the end of window W and
the beginning of window W', whereas there is a gap of a single character between the end
of W’ and the beginning of W (shown as the gray shaded area in Figure 6). These three
windows are disjoint and hence the random variables X, X', and X" indicating f(W), f(W'),
and f(W") respectively are independent and identically distributed. (But note that we do
not assume they are uniformly distributed, as that depends on the choice of the sampling
function f.) In Figure 6, we have X =1 and X' = X" = 2.



R. Groot Koerkamp and G. E. Pibiri
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0|1]12]|3]|4
o|1|2]3]|4
W ati’ =i+¢— |o|1|2|3|4
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Figure 6 The lower bound setting from Theorem 18. In this example, we use w = k = 3, so
£ =w+k—1=05. Red boxes indicate the sampled k-mer in windows W, W', and W” that are
highlighted with a ticker stroke.

Since the three windows W, W’, and W are disjoint, they sample k-mers at distinct
positions (indicated by the red boxes in Figure 6). The proof consists in computing a lower
bound on the expected number of sampled k-mers in the range [i + X,i” + X"). Note that
for non-forward schemes, it is possible that windows before W or after W' sample a k-mer
inside this range. For our lower bound, we will simply ignore such sampled k-mers.

When X < X', the window starting at i+ X +1endsat i+ X +£ =14+ X <+ X', thus
at least one additional k-mer must be sampled in the windows between W and W”’. Similarly,
when X’ < X" the window starting at i’ + X'+ 1endsat ¢/ + X' +£ ="+ X' —1 <"+ X",
so that at least another k-mer must be sampled in the windows between W’ and W".

Thus, the number of sampled k-mers in between positions 7 + X and ¢ + X" is at least
1+PX < X'+ 1+PX' <X”"]. Since X, X', and X" are i.i.d., we have that P[X' <
X"] =P[X’ < X] =1—P[X < X’], and hence

I1+PX < X'|+1+PX' <X"]=3.

Since there are 2¢ + 1 windows in each group, by linearity of expectation, we obtain density
at least

3 1.5
— < .
21 wik o540 «

We point out that Schleimer et al’s [26] lower bound on the density of “random” local
1.5+ 1.5

schemes of — =2 105"

can be improved with the same technique to obtain a lower bound of

which coincidentally happens to exactly match the density of the Ir-minimizer (Corollary 15).

Note also the similarity of the latter bound with that of Theorem 18: Schleimer et al. assume
independent hashes and obtain a denominator of w + 0.5, while Marcais et al. do not and
hence k — 1 surrounding positions of context can be used, leading to w + k — 0.5.

To conclude, Figure 7 gives a visual comparison between the lower bounds considered
here. Note that both bounds are only relevant for k < (w + 1)/2 as they are less than 1/w
otherwise. Also, by solving 1.5/(w + k —0.5) > (1.5 + 1/(2w))/(w + k), we again determine
that the improved bound is better than the simplified one exactly when & < (w + 1)/2.
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Figure 7 Comparison between the trivial 1/w lower bound, the simplified Marcais et al. [11]
lower bound from Appendix A.2; and the new improved bound from Theorem 18, for w = 24.

A.4 The shape of the density function in Formula 1

Here we prove the following lemma, as stated at page 12, and re-stated here for simplicity.

» Lemma 12. The density function in Formula 1 has a “sawtooth” shape: for any integer
1 < r <k, it achieves its minimum onr <t < k either int =1 or int =r+ ((k—r) mod w).

To ease notation, in the following we refer to the density of mod-sampling (Formula 1) as

2+ | &L (1—2)

w

{—t+4+2

d(t) =

where x =1/({ —t+1) if t # k (mod w), and x = 0 otherwise. To prove the lemma, we first
make the following observations.

» Observation 19. Let 0 < g < |k/w] be a given integer. For

(k mod w) + qw <t < (k mod w) + (¢ + 1)w
the quantity ¢ = L%tj is constant. Moreover, L%J =c—1 fort=(kmodw)+ (¢ + 1)w.
Proof. Let t; :== (k mod w) + qw + ¢, for 0 <4 < w. Then

V—tiJ _ Lw—kk—l—(kmodw%—qw—ki)J _ {Mr{kJ _q_HlJ’

w w w

Since 0 <4 < w, we have 1/w < (i + 1)/w < 1, and hence the quantity remains constant. It
is also easy to see that |t | becomes ¢ — 1 when ¢ = (k mod w) + (¢ + 1)w. <

» Observation 20. Let 0 < g < |k/w] be a given integer. For
(k mod w) + quw <t < (kmod w) + (¢ + 1)w — 1

d(t) is increasing, i.e., d(t) < d(t + 1).
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Proof. First, let us consider the case (k mod w) + qw < t < (kmod w) + (¢ + 1)w — 1.
Then t # k (mod w), and the value of z in Equation (2) is equal to 1/(£ — ¢ + 1). From
Observation 19, ¢ = [£] is constant. Hence, after quite some (omitted) steps, d(t) < d(t+1)
simplifies to £ — ¢ > 22+Cc = %. Now, let y=¢ —t > w —1 > 0 so that the previous
inequality can be rewritten as 2y + | |(y —2) > 0. We know that [£] -1 < Z 1 < [Z],
hence 2y + [ £](y —2) > 2y + (£ — 1)(y — 2) = y*/w + (1 — 2/w)y + 2 > 0 which is always
true because w > 2. Now consider the case t = (k mod w) + qw. In this case we have
that the value of z in Equation (2) is 0 for d(¢) and d(t) < d(t 4+ 1) eventually simplifies to

L—t> L%j, which is again always true because w > 2. <

» Observation 21. For any 0 < q < |k/w], d((k mod w) + quw — 1) > d((k mod w) + qu).

Proof. In this case, set t = (k mod w) + qw — 1. We have t +1 =k (mod w) so that z =0

JET
for d(t+1), and obtain d(t) > d(t+1) <= 277?:‘2“ > ei‘jl where ¢ = [£] is a constant

(Observation 19) and this eventually simplifies to £ —t > 2¢ = QL%J, which is true because
w > 2. |

» Observation 22. For any 0 < ¢ < |k/w], d((k mod w) + qw) < d((k mod w) + (g + 1)w).

Proof. Let ¢t = (k mod w) 4+ qw. Clearly, t = k (mod w) and (¢t + w) = k (mod w), hence

x = 0 in Equation (2). So d(t) < d(t + w) <— ﬁﬁz < Ltquiw where ¢ = Ll;tj is a
positive constant for Observation 19. This eventually simplifies to ¢ — ¢ < 2w + wec — 2 =
2wt w St —2<2w4l—t—2 < w>1orw>2 <

From these observations, Lemma 12 follows: the density function from Theorem 10 has
local minima at ¢ = k (mod w) achieves its minimum on r < ¢t < k either at the domain
boundary ¢t = r, or the smallest multiple of w in the domain, r 4+ ((k — r) mod w). See
Figure 4 at page 13 for some concrete examples.
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