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Abstract
Motivation: Sequence alignment has been at the core of computational biology for half a century. Still, it is an open problem to design a practical
algorithm for exact alignment of a pair of related sequences in linear-like time.

Results: We solve exact global pairwise alignment with respect to edit distance by using the A* shortest path algorithm. In order to efficiently
align long sequences with high divergence, we extend the recently proposed seed heuristic with match chaining, gap costs, and inexact
matches. We additionally integrate the novel match pruning technique and diagonal transition to improve the A* search. We prove the correct-
ness of our algorithm, implement it in the A*PA aligner, and justify our extensions intuitively and empirically.
On random sequences of divergence d ¼ 4% and length n, the empirical runtime of A*PA scales near-linearly with length (best fit
n1:06; n � 107 bp). A similar scaling remains up to d ¼ 12% (best fit n1:24, n � 107 bp). For n ¼ 107 bp and d ¼ 4%, A*PA reaches > 500�
speedup compared to the leading exact aligners EDLIB and BIWFA. The performance of A*PA is highly influenced by long gaps. On long
(n > 500kb) ONT reads of a human sample it efficiently aligns sequences with d < 10%, leading to 3� median speedup compared to EDLIB and
BIWFA. When the sequences come from different human samples, A*PA performs 1:7� faster than EDLIB and BIWFA.

Availability and implementation: github.com/RagnarGrootKoerkamp/astar-pairwise-aligner.

1 Introduction

The problem of aligning one biological sequence to another is
known as global pairwise alignment (Navarro 2001). Among
others, it is applied to genome assembly, read mapping, variant
detection, and multiple sequence alignment (Prjibelski et al.
2019). Despite the centrality and age of pairwise alignment
(Needleman and Wunsch 1970), ‘a major open problem is to
implement an algorithm with linear-like empirical scaling on
inputs where the edit distance is linear in n’ (Medvedev 2023a).

Alignment accuracy affects subsequent analyses, so a common
goal is to find a shortest sequence of edit operations (single-letter
insertions, deletions, and substitutions) that transforms one se-
quence into the other. The length of such a sequence is known
as Levenshtein distance (Levenshtein 1966) and edit distance. It
has recently been proven that edit distance cannot be computed
in strongly subquadratic time, unless SETH is false (Backurs and
Indyk 2015). When the number of sequencing errors is propor-
tional to the length, existing exact aligners scale quadratically
both in the theoretical worst case and in practice. Given the in-
creasing amounts of biological data and increasing read lengths,
this is a computational bottleneck (Kucherov 2019).

We solve the global alignment problem provably correct
and empirically fast by using A* on the alignment graph and
building on many existing techniques. Our implementation
A*PA (A* Pairwise Aligner) scales near-linear with length up

to 107 bp long sequences with divergence up to 12%.
Additionally, it shows a speedup over other highly optimized
aligners when aligning long ONT reads.

1.1 Overview of method

To align two sequences A and B globally with minimal cost,
we use the A* shortest path algorithm from the start to the
end of the alignment graph, as first suggested by Hadlock
(1988a). A core part of the A* algorithm is the heuristic
function h(u) that provides a lower bound on the remaining
distance from the current vertex u. A good heuristic effi-
ciently computes an accurate estimate h, so suboptimal
paths get penalized more and A* prioritizes vertices on a
shortest path, thus reaching the target quicker. In this arti-
cle, we extend the seed heuristic by Ivanov et al. (2022) in
several ways to increase its accuracy for long and erroneous
sequences.

1.1.1 Seed heuristic (SH)
To define the seed heuristic (SH) hs, we split A into short,
non-overlapping substrings (seeds) of fixed length k (Fig. 2a).
Since the whole sequence A has to be aligned, each of the
seeds also has to be aligned somewhere in B. If a seed does
not match anywhere in B without mistakes, then at least one
edit has to be made to align it. Thus, the SH hs is the number
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of remaining seeds (contained in A�i) that do not match any-
where in B. The SH is a lower bound on the distance between
the remaining suffixes A�i and B�j. In order to compute hs ef-
ficiently, we precompute all matches in B for all seeds from A.
Where Ivanov et al. (2022) uses crumbs to mark upcoming
matches in the graph, we do not need them due to the simpler
structure of sequence-to-sequence alignment.

1.1.2 Chaining seed heuristic (CSH)
One drawback of the SH is that it may use matches that do
not lie together on a path from u to the end, e.g. the matches
for s1 and s3 in (Fig. 2a). In the chaining seed heuristic (CSH)
hcs (Section 3.1), we enforce that the matches occur in the
same order in B as their corresponding seeds occur in A, i.e.
the matches form a chain going down and right (Fig. 2b).
Now, the number of upcoming errors is at least the minimal
number of remaining seeds that cannot be aligned on a single
chain to the target. When there are many spurious matches
(i.e. outside the optimal alignment), chaining improves the ac-
curacy of the heuristic, thus reducing the number of states ex-
panded by A*. To compute CSH efficiently, we subtract the
maximal number of matches in a chain starting in the current
state from the number of remaining seeds.

1.1.3 Gap-chaining seed heuristic (GCSH)
The CSH penalizes the chaining of two matches by the seed
cost, the number of skipped seeds in between them. This
chaining may skip a different number of letters in A and B, in
which case the absolute difference between these lengths (gap
cost) is a lower bound on the length of a path between the
two matches. The gap-chaining seed heuristic (GCSH) hgcs

(Fig. 2c) takes the maximum of the gap cost and the seed cost,
which significantly improves the accuracy of the heuristic for
sequences with long indels.

1.1.4 Inexact matches
To further improve the accuracy of the heuristic for divergent
sequences, we use inexact matches (Wu and Manber 1992,
Marco-Sola et al. 2012). For each seed in A, our algorithm
now finds all its inexact matches in B with cost at most 1. The
lack of a match of a seed then implies that at least r ¼ 2 edits
are needed to align it. This doubles the potential of our heuris-
tic to penalize errors.

1.1.5 Match pruning
In order to further improve the accuracy of our heuristic, we
apply the multiple-path pruning observation (Poole and
Mackworth 2017): once a shortest path to a vertex u has
been found, no other path to u can be shorter. Since we search
for a single shortest path, we want to incrementally update
our heuristic (similar to Real-Time Adaptive A* (Koenig and
Likhachev 2006)) to penalize further paths to u. We prove
that once A* expands a state u, which is at the start or end of
a match, indeed it has found a shortest path to u. Then, we
can ignore (prune) such a match, thus penalizing other paths
to u (Fig 2d and Section 3.2). Pruning increases the heuristic
in states preceding the match, thereby penalizing states pre-
ceding the ‘tip’ of the A* search. This reduces the number of
expanded states, and leads to near-linear scaling with se-
quence length (Fig. 1e).

1.1.6 Diagonal transition
The diagonal-transition algorithm only visits so called
farthest-reaching states (Ukkonen 1985, Myers 1986) along
each diagonal and lies at the core of wavefront alignment
(WFA) algorithm (Marco-Sola et al. 2021) (Fig. 1c). We intro-
duce the diagonal-transition optimization to the A* algorithm
that skips states known to be not farthest reaching. This is in-
dependent of the A* heuristic and makes the exploration
more ‘hollow’, especially speeding up the quadratic behaviour
of A* in complex regions.

We present an algorithm to efficiently initialize and evalu-
ate these heuristics and optimizations (Supplementary Section
A and Section 3.3), prove the correctness of our methods
(Supplementary Section B), and evaluate and compare their
performance to other optimal aligners (Section 4 and
Supplementary Section C).

1.2 Related work

We first outline the algorithms behind the fastest exact global
aligners: dynamic programming (DP)-based band-doubling
(used by EDLIB) and diagonal transition (DT) (used by
BIWFA). Then, we outline methods that A*PA integrates.

1.2.1 Dynamic programming
This classic approach to aligning two sequences computes a
table where each cell contains the edit distance between a pre-
fix of the first sequence and a prefix of the second by reusing
the solutions for shorter prefixes. This quadratic DP was in-
troduced for speech signals Vintsyuk (1968) and genetic
sequences (Needleman and Wunsch 1970, Sankoff 1972,
Sellers 1974, Wagner and Fischer 1974). The quadratic
O(nm) runtime for sequences of lengths n and m allowed for
aligning of long sequences for the time but speeding it up has
been a central goal in later works. Implementations of this al-
gorithm include SEQAN (Reinert et al. 2017) and PARASAIL

(Daily 2016).

1.2.2 Band-doubling and bit-parallelization
When the aligned sequences are similar, the whole DP table
does not need to be computed. One such output-sensitive al-
gorithm is the band-doubling algorithm of Ukkonen (1985)
(Fig. 1a), which considers only states around the main diago-
nal of the table, in a band with exponentially increasing
width, leading to O(ns) runtime, where s is the edit distance

(a) (b) (c) (d) (e)

Figure 1. Computed states per algorithm. Various optimal alignment

algorithms and their implementation are demonstrated on synthetic data

(length n ¼ 500 bp, divergence d ¼16%). The colour indicates the order of

computation from blue to red. (a) Band-doubling (Edlib), (b) Dijkstra, (c)

Diagonal transition/DT (WFA), (d) DT with divide-andconquer/D&C (BiWFA),

(e) A*PA with gap-chaining seed heuristic (GCSH), match pruning, and DT

(seed length k ¼ 5 and exact matches).
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between the sequences. This algorithm, combined with the
bit-parallel optimization by Myers (1999) is implemented in
EDLIB (�So�si�c and �Siki�c 2017) with Oðns=wÞ runtime, where w
is the machine word size (nowadays 64).

1.2.3 Diagonal transition
DT (Ukkonen 1985, Myers 1986) is a technique, which
exploits the observation that the edit distance does not de-
crease along diagonals of the DP matrix. This allows for an
equivalent representation of the DP table based on farthest-
reaching states for a given edit distance along each diagonal.
DT has an O(ns) worst-case runtime but only takes expected
Oðnþ s2Þ time (Fig. 1c) for random input sequences (Myers
1986) (which is still quadratic for a fixed divergence d ¼ s=n).
It has been extended to linear and affine costs in the WFA
(Marco-Sola et al. 2021) in a way similar to Gotoh (1982). Its
memory usage has been improved to linear in BIWFA
(Marco-Sola et al. 2023) by combining it with the divide-and-
conquer approach of Hirschberg (1975), similar to Myers
(1986) for unit edit costs. Wu et al. (1990) and Papamichail
and Papamichail (2009) apply DT to align sequences of differ-
ent lengths.

1.2.4 Contours
The longest common subsequence (LCS) problem is a special
case of edit distance, in which gaps are allowed but substitu-
tions are forbidden. Contours partition the state-space into
regions with the same remaining answer of the LCS subtask
(Fig. 3). The contours can be computed in log-linear time in
the number of matching elements between the two sequences,
which is practical for large alphabets (Hirschberg 1977, Hunt
and Szymanski 1977).

1.2.5 Shortest paths and A*
An alignment that minimizes edit distance corresponds to a
shortest path in the alignment graph (Vintsyuk 1968,
Ukkonen 1985). Assuming non-negative edit costs, a shortest
path can be found using Dijkstra’s algorithm (Ukkonen 1985)
(Fig. 1b) or A* (Hart et al. 1968). A* is an informed search al-
gorithm, which uses a task-specific heuristic function to direct
its search, and has previously been applied to the alignment
graph by Hadlock (1988a, b) and Spouge (1989, 1991). A*
with an accurate heuristic may find a shortest path

significantly faster than an uninformed search, such as
Dijkstra’s algorithm.

1.2.6 A* heuristics
One widely used heuristic function is the gap cost that counts
the minimal number of indels needed to align the suffixes of
two sequences (Ukkonen 1985, Spouge 1989, Wu et al. 1990,
Myers and Miller 1995, Papamichail and Papamichail 2009,
�So�si�c and �Siki�c 2017). Hadlock (1988a) introduces a heuristic
based on character frequencies.

1.2.7 Seed-and-extend
Seed-and-extend is a commonly used paradigm for approxi-
mately solving semi-global alignment by first matching similar
regions between sequences (seeding) to find matches (also
called anchors), followed by extending these matches
(Kucherov 2019). Aligning long reads requires the additional
step of chaining the seed matches (seed-chain-extend). Seeds
have also been used to solve the LCSk generalization of LCS
(Benson et al. 2013, Paveti�c et al. 2017). Except for the SH
(Ivanov et al. 2022), most seeding approaches seek for seeds
with accurate long matches.

1.2.8 Seed heuristic
A* with SH is an exact algorithm that was recently intro-
duced for exact semi-global sequence-to-graph alignment
(Ivanov et al. 2022). In a precomputation step, the query se-
quence is split into non-overlapping seeds each of which is
matched exactly to the reference. When A* explores a new
state, the SH is computed as the number of remaining seeds
that cannot be matched in the upcoming reference. A* with
the SH enables provably exact alignment but runs reasonably
fast only when the long sequences are very similar (� 0:3%
divergence).

1.3 Contributions

We present an algorithm for exact global alignment that uses
A* on the alignment graph (Hart et al. 1968, Hadlock
1988a), starting with the SH of Ivanov et al. (2022).

We increase the accuracy of this heuristic in several novel
ways: seeds must match in order in the CSH, and gaps be-
tween seeds are penalized in the GCSH. The novel match
pruning technique penalizes states ‘lagging behind’ the tip of
the search and turns the otherwise quadratic algorithm into

(a) (b) (c) (d)

Figure 2. Demonstration of SH, CSH, GCSH, and match pruning. Sequence A on top is split into five seeds (horizontal black segments _). Each seed is exactly

matched in B (diagonal black segments \). The heuristic is evaluated at state u (blue circles ), based on the four remaining seeds. The heuristic value is based on

a maximal chain of matches (green columns for seeds with matches; red columns otherwise). Dashed lines denote chaining of matches. (a) The SH hsðuÞ ¼ 1

is the number of remaining seeds that do not have matches (only s2). (b) The CSH hcsðuÞ ¼ 2 is the number of remaining seeds without a match (s2 and s3) on a

path going only down and to the right containing a maximal number of matches. (c) The GCSH hgcsðuÞ ¼ 4 is minimal cost of a chain, where the cost of joining

twomatches is the maximum of the number of not matched seeds and the gap cost between them. Red dashed lines denote gap costs. (d) Once the start or

end of a match is expanded (green circles ), the match is pruned (red cross ), and future computations of the heuristic ignore it. s1 is removed from the

maximum chain of matches starting at u so ĥcsðuÞ increases by 1.
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an empirically near-linear algorithm in many cases. Inexact
matches (Wu and Manber 1992, Marco-Sola et al. 2012) in-
crease the divergence of sequences that can be efficiently
aligned. We additionally apply the diagonal-transition algo-
rithm (Ukkonen 1985, Myers 1986), so that only the small
fraction of farthest-reaching states needs to be computed. We
prove the correctness of our methods, and apply contours
(Hirschberg 1977, Hunt and Szymanski 1977) to efficiently
initialize and evaluate the heuristic. We implement our
method in the novel aligner A*PA.

On uniform-random synthetic data with 4% divergence,
the runtime of A*PA scales linearly with length up to 107 bp
and is up to 500� faster than EDLIB and BIWFA. On > 500 kb
long Oxford Nanopore Technologies (ONT) reads of the hu-
man genome, A*PA is 3� faster in median than EDLIB and
BIWFA when only read errors are present, and 1:7� faster in
median when additionally genetic variation is present.

2 Preliminaries

This section provides definitions and notation that are used
throughout the article. A summary of notation is included in
Supplementary Section D.

2.1 Sequences

The input sequences A ¼ a0a1 . . . ai . . . an�1 and B ¼
b0b1 . . . bj . . . bm�1 are over an alphabet R with four letters.
We refer to substrings ai . . . ai0�1 as Ai...i0 , to prefixes
a0 . . . ai�1 as A< i, and to suffixes ai . . . an�1 as A�i. The edit
distance edðA;BÞ is the minimum number of insertions, dele-
tions, and substitutions of single letters needed to convert A
into B. The divergence is the observed number of errors per
letter, d :¼ edðA;BÞ=n, whereas the error rate e is the number
of errors per letter applied to a sequence.

2.2 Alignment graph

Let state hi; ji denote the subtask of aligning the prefix A< i to
the prefix B< j. The alignment graph (also called edit graph)
G(V, E) is a weighted directed graph with vertices V ¼
fhi; ji j0 � i � n; 0 � j � mg corresponding to all states,
and edges connecting subtasks: edge hi; ji ! hiþ 1; jþ 1i has
cost zero if ai ¼ bj (match) and one otherwise (substitution),
and edges hi; ji ! hiþ 1; ji (deletion) and hi; ji ! hi; jþ 1i (in-
sertion) have cost 1. We denote the starting state h0;0i by vs,
the target state hn;mi by vt, and the distance between states u
and v by dðu; vÞ. For brevity, we write f hi; ji instead of
f ðhi; jiÞ.

2.3 Paths and alignments

A path p from hi; ji to hi0; j0i in the alignment graph G corre-
sponds to a (pairwise) alignment of the substrings Ai...i0 and Bj...j0

with cost cpathðpÞ. A shortest path p� from vs to vt corresponds
to an optimal alignment, thus, cpathðp�Þ ¼ dðvs; vtÞ ¼ edðA;BÞ.
We write g�ðuÞ :¼ dðvs;uÞ for the distance from the start to u
and h�ðuÞ :¼ dðu; vtÞ for the distance from u to the target.

2.4 Seeds and matches

We split the sequence A into a set of consecutive non-
overlapping substrings (seeds) S ¼ fs0; s1; s2; . . . ; sbn=kc�1g,
such that each seed sl ¼ Alk...lkþk has length k. After aligning
the first i letters of A, our heuristics will only depend on the
remaining seeds S�i :¼ fsl 2 S j lk � ig contained in the suffix
A�i. We denote the set of seeds between u ¼ hi; ji and v ¼
hi0; j0i by Su...v ¼ Si...i0 ¼ fsl 2 S j i � lk; lkþ k � i0g and an
alignment of s to a subsequence of B by ps. The alignments of
seed s with sufficiently low cost (Section 3.1) form the setMs

of matches.

2.5 Dijkstra and A*

Dijkstra’s algorithm (Dijkstra 1959) finds a shortest path
from vs to vt by expanding (generating all successors) vertices

(a) (b) (c)

(d) (e) (f)

Figure 3. Contours and layers of different heuristics after aligning (n ¼ 48; m ¼ 42; r ¼ 1; k ¼ 3, edit distance 10). Exact matches are black diagonal

segments ( ). The background colour indicates SpðuÞ, the maximum number of matches on a �p -chain from u to the end starting, with SpðuÞ ¼ 0 in white.

The thin black boundaries of these regions are Contours. The states of layer L‘ precede contour ‘. Expanded states are green ( ), open states blue ( ), and

pruned matches red ( ). Pruning matches changes the contours and layers. GCSH ignores matchesm 6�T vt .
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in order of increasing distance g�ðuÞ from the start. Each ver-
tex to be expanded is chosen from a set of open vertices. The
A* algorithm (Hart et al. 1968, 1972, Pearl 1984), instead
directs the search towards a target by expanding vertices in
order of increasing f ðuÞ :¼ gðuÞ þ hðuÞ, where h(u) is a heu-
ristic function that estimates the distance h�ðuÞ to the end and
g(u) is the shortest length of a path from vs to u found so far.
A heuristic is admissible if it is a lower bound on the remain-
ing distance, hðuÞ � h�ðuÞ, which guarantees that A* has
found a shortest path as soon as it expands vt. Heuristic h1

dominates (is more accurate than) another heuristic h2 when
h1ðuÞ � h2ðuÞ for all vertices u. A dominant heuristic will usu-
ally, but not always (Holte 2010), expand less vertices. Note
that Dijkstra’s algorithm is equivalent to A* using a heuristic
that is always 0, and that both algorithms require non-
negative edge costs. Our variant of the A* algorithm is pro-
vided in Supplementary Section A.1.

2.6 Chains

A state u ¼ hi; ji 2 V precedes a state v ¼ hi0; j0i 2 V, denoted
u � v, when i � i0 and j � j0. Similarly, a match m precedes
a match m0, denoted m � m0, when the end of m precedes the
start of m0. This makes the set of matches a partially ordered
set. A state u precedes a match m, denoted u � m, when it
precedes the start of the match. A chain of matches is a (possi-
bly empty) sequence of matches m1 � . . . � ml.

2.7 Gap cost

The number of indels to align substrings Ai...i0 and Bj...j0 is at least
their difference in length: cgapðhi; ji; hi0; j0iÞ :¼ jði0 � iÞ � ðj0 � jÞ j.
For u � v � w, the gap cost satisfies the triangle inequality
cgapðu;wÞ � cgapðu; vÞ þ cgapðv;wÞ.

2.8 Contours

To efficiently calculate maximal chains of matches, contours
are used. Given a set of matches M, S(u) is the number of
matches in the longest chain u � m1 � . . ., starting at u. The
function Shi; ji is non-increasing in both i and j. Contours are
the boundaries between regions of states with SðuÞ ¼ ‘ and
SðuÞ < ‘ (Fig. 3). Note that contour ‘ is completely deter-
mined by the set of matches m 2M for which SðstartðmÞÞ ¼ ‘
(Hirschberg 1977). Hunt and Szymanski (1977) give an algo-
rithm to efficiently compute S when M is the set of single-
letter matches between A and B, and Deorowicz and
Grabowski (2014) give an algorithm whenM is the set of ex-
act k-mer matches.

3 Methods

We formally define the general CSH (Section 3.1) that encom-
pases inexact matches, chaining, and gap costs (Fig. 2). Next,
we introduce the match pruning (Section 3.2) improvement
and integrate our A* algorithm with the diagonal-transition
optimization (Supplementary Section A.2). We present a prac-
tical algorithm (Section 3.3), implementation (Supplementary
Section A.3), and proofs of correctness (Supplementary
Section B).

3.1 General CSH

We introduce three heuristics for A* that estimate the edit dis-
tance between a pair of suffixes. Each heuristic is an instance of
a general CSH. After splitting the first sequence into seeds S,
and finding all matchesM in the second sequence, any shortest

path to the target can be partitioned into a chain of matches and
connections between the matches. Thus, the cost of a path is the
sum of match costs cm and chaining costs c. Our simplest SH
ignores the position in B where seeds match and counts the
number of seeds that were not matched (c ¼ cseed). To efficiently
handle more errors, we allow seeds to be matched inexactly, re-
quire the matches in a path to be ordered (CSH), and include the
gap-cost in the chaining cost c ¼ maxðcgap; cseedÞ to penalize
indels between matches (GCSH).

3.1.1 Inexact matches
We generalize the notion of exact matches to inexact matches.
We fix a threshold cost r (0 < r � k) called the seed poten-
tial and define the set of matches Ms as all alignments m of
seed s with match cost cmðmÞ < r. The inequality is strict so
that Ms ¼ 1 implies that aligning the seed will incur cost at
least r. Let M¼ [sMs denote the set of all matches. With
r ¼ 1, we allow only exact matches, while with r ¼ 2, we al-
low both exact and inexact matches with one edit. We do not
consider higher r in this article. For notational convenience,
we define mx 62 M to be a match from vt to vt of cost 0.

3.1.2 Potential of a heuristic
We call the maximal value the heuristic can take in a state its po-
tential P. The potential of our heuristics in state hi; ji is the sum
of seed potentials r over all seeds after i: Phi; ji :¼ r � j S�i j .

3.1.3 Chaining matches
Each heuristic limits how matches can be chained based on a
partial order on states. We write u�p v for the partial order
implied by a function p: pðuÞ � pðvÞ. A �p-chain is a sequence
of matches m1�p . . . �p ml that precede each other:
endðmiÞ�p startðmiþ1Þ for 1 � i < l. To chain matches
according only to their i-coordinate, SH is defined using
�i-chains, while CSH and GCSH are defined using � that
compares both i and j.

3.1.4 Chaining cost
The chaining cost c is a lower bound on the path cost between
two consecutive matches: from the end state u of a match, to
the start v of the next match.

For SH and CSH, the seed cost is r for each seed that is not
matched: cseedðu; vÞ :¼ r � jSu...vj. When u�i v and v is not in
the interior of a seed, then cseedðu; vÞ ¼ PðuÞ � PðvÞ.

For GCSH, we also include the gap cost cgapðhi; ji;
hi0; j0iÞ :¼ jði0 � iÞ � ðj0 � jÞj, which is the minimal number of
indels needed to correct for the difference in length between the
substrings Ai...i0 and Bj...j0 between two consecutive matches
(Section 2). Combining the seed cost and the chaining cost, we
obtain the gap-seed cost cgs ¼ maxðcseed; cgapÞ, which is capable
of penalizing long indels and we use for GCSH. Note that c ¼
cseed þ cgap would not give an admissible heuristic since indels
could be counted twice, in both cseed and cgap.

For conciseness, we also define c, cseed; cgap, and cgs be-
tween matches cðm;m0Þ :¼ cðendðmÞ; startðm0ÞÞ, from a state
to a match cðu;m0Þ :¼ cðu; startðm0ÞÞ, and from a match to a
state cðm;uÞ ¼ cðendðmÞ;uÞ.

3.1.5 General CSH
We define the general CSH used to instantiate SH, CSH, and
GCSH.
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Definition 1 (General CSH) Given a set of matchesM,
partial order �p, and chaining cost c, the general CSH
hMp;cðuÞ is the minimal sum of match costs and chaining
costs over all �p-chains (indexing extends to m0 :¼ u
and mlþ1 :¼ mx):

hMp;cðuÞ :¼ min
u�pm1�p . . .�pml�pvt

mi 2M

X
0� i� l

½cðmi;miþ1Þ þ cmðmiþ1Þ	:

We instantiate our heuristics according to Table 1. Our ad-
missibility proofs (Supplementary Section B.1) are based on
cm and c being lower bounds on disjoint parts of the remain-
ing path. The more complex hgcs dominates the other heuris-
tics and usually expands fewer states.

Theorem 1 The SH hs, the CSH hcs, and the GCSH hgcs are
admissible. Furthermore, hMs ðuÞ � hMcs ðuÞ � hMgcsðuÞ
for all states u.

We are now ready to instantiate A* with our admissible
heuristics but we will first improve them and show how to
compute them efficiently.

3.2 Match pruning

In order to reduce the number of states expanded by the A*
algorithm, we apply the multiple-path pruning observation:
once a shortest path to a state has been found, no other path
to this state could possibly improve the global shortest path
(Poole and Mackworth 2017). As soon as A* expands the
start or end of a match, we prune it, so that the heuristic in
preceding states no longer benefits from the match, and they
get deprioritized by A*. We define pruned variants of all our
heuristics that ignore pruned matches:

Definition 2 (Pruning heuristic) Let E be the set of expanded
states during the A* search, and letMnE be the set of
matches that were not pruned, i.e. those matches not
starting or ending in an expanded state. We say that
ĥ :¼ hMnE is a pruning heuristic version of h.

The hat over the heuristic function (ĥ) denotes the implicit
dependency on the progress of the A*, where at each step a
different hMnE is used. Our modified A* algorithm
(Supplementary Section A.1) works for pruning heuristics by
ensuring that the f-value of a state is up to date before
expanding it, and otherwise reorders it in the priority queue.
Even though match pruning violates the admissibility of our
heuristics for some vertices, we prove that A* is still guaran-
teed to find a shortest path (Supplementary Section B.2). To
this end, we show that our pruning heuristics are weakly ad-
missible heuristics (Supplementary Definition S7) in the sense
that they are admissible on at least one path from vs to vt.

Theorem 2 A* with a weakly admissible heuristic finds a
shortest path.

Theorem 3 The pruning heuristics ĥs, ĥcs, and ĥgcs are
weakly admissible.

Pruning will allow us to scale near-linearly with sequence
length, without sacrificing optimality of the resulting
alignment.

3.3 Computing the heuristic

We present an algorithm to efficiently compute our heuris-
tics (pseudocode in Supplementary Section A.4, worst-case
asymptotic analysis in Supplementary Section A.5). At a
high level, we rephrase the minimization of costs (over
paths) to a maximization of scores (over chains of matches).
We initialize the heuristic by precomputing all seeds,
matches, potentials, and a contours data structure used to
compute the maximum number of matches on a chain.
During the A* search, the heuristic is evaluated in all ex-
plored states, and the contours are updated whenever a
match gets pruned.

3.3.1 Scores
The score of a match m is scoreðmÞ :¼ r� cmðmÞ and is al-
ways positive. The score of a �p-chain m1�p . . . �p ml is the
sum of the scores of the matches in the chain. We define the
chain score of a match m as

SpðmÞ :¼ max
m�pm1�p...�pml�pvt

fscoreðmÞ þ � � � þ scoreðmlÞg: (1)

Since �p is a partial order, Sp can be computed with base case
SpðmxÞ ¼ 0 and the recursion

SpðmÞ ¼ scoreðmÞ þ max
m�pm0�vt

Spðm0Þ: (2)

We also define the chain score of a state u as the maximum
chain score over succeeding matches m: SpðuÞ ¼ maxu�pm�pvt

SpðmÞ, so that Equation (2) can be rewritten as SpðmÞ ¼
scoreðmÞ þ SpðendðmÞÞ.

The following theorem allows us to rephrase the heuristic
in terms of potentials and scores for heuristics that use c ¼
cseed and respect the order of the seeds, which is the case for hs

and hcs (proof in Supplementary Section B.3):

Theorem 4 hMp;cseed
ðuÞ ¼ PðuÞ � SpðuÞ for any partial order

�p that is a refinement of �i (i.e. u�p v must imply
u�i v).

3.3.2 Layers and contours
We compute hs and hcs efficiently using contours. Let layer L‘
be the set of states u with score SpðuÞ � ‘, so that L‘ 
 L‘�1.
The ‘th contour is the boundary of L‘ (Fig. 3). Layer L‘
(‘ > 0) contains exactly those states that precede a match m
with score ‘ � SpðmÞ < ‘þ r (Lemma 5 in Supplementary
Section B.3).

3.3.3 Computing SpðuÞ
This last observation inspires our algorithm for computing
chain scores. For each layer L‘, we store the set L½i	 of matches
having score ‘: L½‘	 ¼ fm 2Mj SpðmÞ ¼ ‘g. The score SpðuÞ

Table 1. Definitions of our heuristic functions.

Heuristic Order Chaining cost c

hsðuÞ Seed heuristic (SH) �i cseed
hcsðuÞ Chaining seed h. (CSH) � cseed
hgcsðuÞ Gap-chaining seed h. (GCSH) � maxðcgap; cseedÞ

Notes: SH orders the matches by i and uses only the seed cost. CSH orders
the matches by both i and j. GCSH additionally exploits the gap cost.
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is then the highest ‘ such that layer L½‘	 contains a match m
reachable from u (u�p m). From Lemma 5, we know that
SpðuÞ � ‘ if and only if one of the layers L½‘0	 for ‘0 2 ½‘; ‘þ rÞ
contains a match preceded by u. We use this to compute SpðuÞ
using a binary search over the layers ‘. We initialize L½0	 ¼
fmxg (mx is a fictive match at the target vt), sort all matches
in M by �p, and process them in decreasing order (from the
target to the start). After computing SpðendðmÞÞ, we add m to
layer SpðmÞ ¼ scoreðmÞ þ SpðendðmÞÞ. Matches that do not
precede the target (startðmÞ 6�p mx) are ignored.

3.3.4 Pruning matches from L
When pruning matches starting or ending in state u in layer
‘u ¼ SpðuÞ, we remove all matches that start at u from layers
L½‘u � rþ 1	 to L½‘u	, and all matches starting in some v and
ending in u from layers L½‘v � rþ 1	 to L½‘v	.

Pruning a match may change Sp in layers above ‘u, so we
update them after each prune. We iterate over increasing ‘

starting at ‘u þ 1 and recompute ‘0 :¼ SpðmÞ � ‘ for all
matches m in L½‘	. If ‘0 6¼ ‘, we move m from L½‘	 to L½‘0	. We
stop iterating when either r consecutive layers were left
unchanged, or when all matches in r� 1þ ‘� ‘0 consecutive
layers have shifted down by the same amount ‘� ‘0. In the
former case, no further scores can change, and in the latter
case, Sp decreases by ‘� ‘0 for all matches with score � ‘. We
remove the emptied layers L½‘0 þ 1	 to L½‘	 so that all higher
layers shift down by ‘� ‘0.

3.3.5 Seed heuristic
Due to the simple structure of the SH, we also simplify its
computation by only storing the start of each layer and the
number of matches in each layer, as opposed to the full set of
matches.

3.3.6 Gap-chaining seed heuristic
Lemma 3.3 does not apply to GCSH since it uses chaining
cost c ¼ maxðcgapðu; vÞ; cseedðu; vÞÞ, which is different from
cseedðu; vÞ. It turns out that in this new setting it is never opti-
mal to chain two matches if the gap cost between them is
higher than the seed cost. Intuitively, it is better to miss a
match than to incur additional gap-cost to include it. We cap-
ture this constraint by introducing a transformation T such
that u�T v holds if and only if cseedðu; vÞ � cgapðu; vÞ, as
shown in Supplementary Section B.4. Using an additional
consistency constraint on the set of matches, we can compute
hMgcs via ST as before.

Definition 3 (Consistent matches) A set of matchesM is
consistent when for each m 2M (from hi; ji to hi0; j0i)
with scoreðmÞ > 1, for each adjacent pair of existing
states ðhi; j61i; hi0; j0iÞ and ðhi; ji; hi0; j061iÞ, there is an
adjacent match with corresponding start and end, and
score at least scoreðmÞ � 1.

This condition means that for r ¼ 2, each exact match must
be adjacent to four (or less around the edges of the graph) in-
exact matches starting or ending in the same state. Since we
find all matches m with cmðmÞ < r, our initial set of matches
is consistent. To preserve consistency, we do not prune
matches if that would break the consistency ofM.

Definition 4 (Gap transformation) The partial order �T on
states is induced by comparing both coordinates after
the gap transformation

T : hi; ji 7! ði� j� Phi; ji; j� i� Phi; jiÞ:

Theorem 5 Given a consistent set of matches M, the
GCSH can be computed using scores in the
transformed domain:

hMgcsðuÞ ¼
PðuÞ � STðuÞ if u�T vt;
cgapðu; vtÞ if u 6�T vt:

�

Using the transformation of the match coordinates, we re-
duce cgs to cseed and efficiently compute GCSH for any ex-
plored state.

4 Evaluations

Our algorithm is implemented in the aligner A*PA (github.
com/RagnarGrootKoerkamp/astar-pairwise-aligner, tag evals)
in Rust. We compare it with state-of-the-art exact aligners on
synthetic (Section 4.2) and human (Section 4.3) data (github.
com/pairwise-alignment/pa-bench/releases/tag/datasets) using
PABENCH (github.com/pairwise-alignment/pa-bench, tag astarpa-
evals). We justify our heuristics and optimizations by comparing
their scaling and performance (Section 4.4).

4.1 Setup
4.1.1 Synthetic data
Our synthetic datasets are parameterized by sequence length
n, induced error rate e, and total number of basepairs N,
resulting in N/n sequence pairs. The first sequence in each
pair is uniform-random from Rn. The second is generated by
sequentially applying be � nc edit operations (insertions, dele-
tions, and substitutions with equal one-third probability) to
the first sequence. Introduced errors can cancel each other,
making the divergence d between the sequences less than e.
Induced error rates of 1%, 5%, 10%, and 15% correspond
to divergences of 0.9%, 4.3%, 8.2%, and 11.7%, which we
refer to as 1%, 4%, 8%, and 12%.

4.1.2 Human data
We use two datasets of ultra-long ONT reads of the human
genome: one without and one with genetic variation. All reads
are 500–1100kb long, with mean divergence around 7%. The
average length of the longest gap in the alignment is 0:1kb for
ONT reads, and 2kb for ONT reads with genetic variation
(detailed statistics in Supplementary Section C.5). The refer-
ence genome is CHM13 (v1.1) (Nurk et al. 2022). The reads
used for each dataset are:

• ONT: 50 reads sampled from those used to assemble
CHM13.

• ONT with genetic variation: 48 reads from another hu-
man (Bowden et al. 2019), as used in the BIWFA paper
(Marco-Sola et al. 2023).
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4.1.3 Algorithms and aligners
We compare SH, CSH, and GCSH (all with pruning) as
implemented in A*PA to the state-of-the-art exact aligners
BIWFA and EDLIB. We also compare to Dijkstra’s algorithm
and A* with previously introduced heuristics (gap cost and
character frequencies of Hadlock (1988a), and SH without
pruning of Ivanov et al. (2022)). We exclude SEQAN and
PARASAIL since they are outperformed by WFA and EDLIB

(�So�si�c and �Siki�c 2017, Marco-Sola et al. 2021). We run all
aligners with unit edit costs with traceback enabled.

4.1.4 A*PA parameters
Inexact matches (r ¼ 2) and short seeds (low k) increase the
accuracy of GCSH for divergent sequences, thus reducing the
number of expanded states. On the other hand, shorter seeds
have more matches, slowing down precomputation and con-
tour updates. A parameter grid search on synthetic data
(Supplementary Section C.1) shows that the runtime is gener-
ally insensitive to k as long as k is high enough to avoid too
many spurious matches (k� log4 n), and the potential is suf-
ficiently larger than edit distance (k� r=d). For d ¼ 4%, ex-
act matches lead to faster runtimes, while d ¼ 12% requires
r ¼ 2 and k < 2=d ¼ 16:7. We fix k¼15 throughout the
evaluations since this is a good choice for both synthetic and
human data.

4.1.5 Execution
We use PABENCH on Arch Linux on an Intel Core i7-
10750H processor with 64 GB of memory and 6 cores, with-
out hyper-threading, frequency boost, and CPU power saving
features. We fix the CPU frequency to 2.6GHz, limit the
memory usage to 32 GiB, and run one single-threaded job at
a time with niceness –20.

4.1.6 Measurements
PABENCH first reads the dataset from disk and then measures
the wall-clock time and increase in memory usage of each
aligner. Plots and tables refer to the average alignment time
per aligned pair, and for A*PA include the time to build the
heuristic. Best-fit polynomials are calculated via a linear fit in
the log–log domain using the least squares method.

4.2 Scaling on synthetic data

4.2.1 Runtime scaling with length
We compare our A* heuristics with EDLIB, BIWFA, and other
heuristics in terms of runtime scaling with n and d (Fig. 4, ex-
tended comparison in Supplementary Section C.2). As theo-
retically predicted, EDLIB and BIWFA scale quadratically. For
small edit distance, EDLIB is subquadratic due to the bit-
parallel optimization. Dijkstra, A* with the gap heuristic,
character frequency heuristic (Hadlock 1988a), or original
SH (Ivanov et al. 2022) all scale quadratically. The empirical
scaling of A*PA is subquadratic for d � 12 and n � 107,
making it the fastest aligner for long sequences (n > 30kb).
For low divergence (d � 4%) even the simplest SH scales
near-linearly with length (best fit n1:06 for n � 107). For high
divergence (d ¼ 12%), we need inexact matches, and the run-
time of SH sharply degrades for long sequences (n > 106 bp)
due to spurious matches. This is countered by chaining the
matches in CSH and GCSH, which expand linearly many
states (Supplementary Section C.3). GCSH with DT is not ex-
actly linear due to high memory usage and state reordering
(Supplementary Section C.7 shows the time spent on parts of
the algorithm).

4.2.2 Runtime scaling with divergence
Figure 3c shows that A*PA has near constant runtime in d as
long as the edit distance is sufficiently less than the heuristic
potential (i.e. d� r=k). In this regime, A*PA is faster than
both EDLIB (linear in d) and BIWFA (quadratic in d). For
1 � d � 6%, exact matches have less overhead than inexact
matches, while BIWFA is fastest for d � 1%. A*PA becomes
linear in d for d � r=k (Supplementary Section C.4).

4.2.3 Performance
A*PA with SH with DT is > 500� faster than EDLIB and
BIWFA for d ¼ 4% and n ¼ 107 (Fig. 4a). For n ¼ 106 and
d � 12%, memory usage is <500 MB for all heuristics
(Supplementary Section C.6).

4.3 Speedup on human data

We compare runtime (Fig. 4 and Supplementary Section C.7),
and memory usage (Supplementary Section C.6) on human
data. We configure A*PA to prune matches only when
expanding their start (not their end), leaving some matches on

(a) (b) (c)

Figure 4. Runtime comparison on synthetic data. (a, b) Log–log plots comparing variants of our heuristic, including the simplest (SH) and most accurate

(GCSH with DT), to EDLIB, BIWFA, and other algorithms (averaged over 106–107 total bp, seed length k ¼ 15). The slopes of the bottom (top) of the

background cones correspond to linear (quadratic) growth. SH without pruning is dotted, and variants with DT are solid. For d ¼ 12%, red dots show

where the heuristic potential is less than the edit distance. Missing data points are due to exceeding the 32 GB memory limit. (c) Runtime scaling with

divergence (n ¼ 105, 106 total bp, and k ¼ 15).
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the optimal path unpruned and speeding up contour updates.
The runtime of A*PA (GCSH with DT) on ONT reads is less
than EDLIB and BIWFA in all quartiles, with the median being
> 3� faster. However, the runtime of A*PA grows rapidly
when d � 10%, so we set a time limit of 100 s per read, caus-
ing six alignments to time out. In real-world applications, the
user would either only get results for a subset of alignments,
or could use a different tool to align divergent sequences.
With genetic variation, A*PA is 1:7� faster than EDLIB and
BIWFA in median. Low-divergence alignments are faster than
EDLIB, while high-divergence alignments are slower (three
sequences with d � 10% time out) because of expanding qua-
dratically many states in complex regions (Supplementary
Section C.8). Since slow alignments dominate the total run-
time, EDLIB has a lower mean runtime.

4.4 Effect of pruning, inexact matches, chaining,

and DT

We visualize our techniques on a complex alignment in
Supplementary Section C.10.

4.4.1 SH with pruning enables near-linear runtime
Figure 3a shows that the addition of match pruning changes
the quadratic runtime of SH without pruning to near-linear,
giving multiple orders of magnitude speedup.

4.4.2 Inexact matches cope with higher divergence
Inexact matches double the heuristic potential, thereby almost
doubling the divergence up to which A*PA is fast (Fig. 4c).
This comes at the cost of a slower precomputation to find all
matches.

4.4.3 Chaining copes with spurious matches
While CSH improves on SH for some very slow alignments
(Fig. 4), more often the overhead of computing contours
makes it slower than SH.

4.4.4 Gap-chaining copes with indels
GCSH is significantly and consistently faster than SH and
CSH on human data, especially for slow alignments (Fig. 5).
GCSH has less overhead over SH than CSH, due to filtering
out matches m 6� vt.

4.4.5 DT speeds up quadratic search
DT significantly reduces the number of expanded states when
the A* search is quadratic (Fig. 4a and Supplementary Section

C.4). This results in a significant speedup for genetic variation
of long indels (Fig. 5).

CSH, GCSH, and DT only have a small impact on the uni-
form synthetic data, where usually either the SH is sufficiently
accurate for the entire alignment and runtime is near-linear
(d� r=k), or even GCSH is not strong enough and runtime is
quadratic (d� r=k). On human data however, containing
longer indels and small regions of quadratic search, the addi-
tional accuracy of GCSH and the reduced number of states
explored by DT provide a significant speedup (Supplementary
Section C.10).

5 Discussion

5.1 Seeds are necessary; matches are optional

The SH exploits the lack of matches to penalize alignments. In
our heuristics, the more seeds without matches, the higher the
penalty for alignments and the easier it is to dismiss
suboptimal ones. In the extreme, not having any matches can
be sufficient for finding an optimal alignment in linear time
(Supplementary Section C.9).

5.2 Modes: near-linear and quadratic

The A* algorithm with a SH has two modes of operation that
we call near-linear and quadratic. In the near-linear mode,
A*PA expands few vertices because the heuristic successfully
penalizes all edits between the sequences. When the diver-
gence is larger than what the heuristic can handle, every edit
that is not penalized by the heuristic increases the explored
band, leading to a quadratic exploration similar to Dijkstra.

5.3 Limitations

1) Quadratic scaling. Complex data can trigger a quadratic
(Dijkstra-like) search, which nullifies the benefits of A*
(Supplementary Sections C.8 and C.10). Regions with
high divergence (d � 10%), such as high error rate or
long indels, exceed the heuristic potential to direct the
search and make the exploration quadratic. Low-
complexity regions (e.g. with repeats) result in a qua-
dratic number of matches, which also take quadratic
time.

2) Computational overhead of A*. Computing states se-
quentially (as in EDLIB, BIWFA) is orders of magnitude
faster than computing them in random order (as in
Dijkstra, A*). A*PA outperforms EDLIB and BIWFA
(Fig. 4a) when the sequences are long enough for the

Figure 5. Runtime on long human reads. Each dot is an alignment without (left) or with (right) genetic variation. Runtime is capped at 100 s. Boxplots

show the three quartiles and red dots show where the edit distance is larger than the heuristic potential. The median runtime of A*PA (GCSH þ DT,

k ¼ 15, r ¼ 2) is 3� (left) and 1:7� (right) faster than EDLIB and BIWFA.
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linear-scaling to have an effect (n > 30kb), and there are
enough errors (d > 1%) to trigger the quadratic behav-
iour of BIWFA.

5.4 Future work

1) Performance. We are working on a DP version of A*PA
that applies computational volumes (Spouge 1989,
1991), block-based computations (Liu and Steinegger
2023), and a SIMD version of EDLIB’s bit-parallelization
(Myers 1999). This has already shown 10� additional
speedup on the human datasets and is less sensitive to
the input parameters. Independently, the number of
matches could be reduced by using variable seed lengths
and skipping seeds having many matches.

2) Generalizations. Our CSH could be generalized to non-
unit and affine costs, and to semi-global alignment. Cost
models that better correspond to the data can speed up
the alignment.

3) Relaxations. At the expense of optimality guarantees, in-
admissible heuristics could speed up A*. Another possi-
ble relaxation would be to validate the optimality of a
given alignment instead of computing it from scratch.

4) Analysis. The near-linear scaling with length of A* is not
asymptotic and requires a more thorough theoretical
analysis (Medvedev 2023b).
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