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The FASTQ file format is the lingua franca of primary data 

distribution and processing across most of bioinformatics. 

Over time, the compression, storage, transmission, and de­

compression of gzip compressed fastq.gz files has become 

a substantial scalability bottleneck in the modern world of 

fast and massively parallel genomics tools and algorithms.

In this work, we introduce mim: a lightweight, auxiliary index 

that enables fast, parallel, and highly-scalable parsing of 

compressed fastq.gz files. The creation of the mim index for 

a file is a one-time operation that can be performed in time 

comparable to that of simply decompressing and parsing 

the file (index creation induces ∼ 20% overhead) and with 

minimal working memory. The mim index itself is very small, 

usually about 1
1000 -th of the size of the original compressed 

file, and can be easily stored along side the file or fetched 

from a remote location when it is needed. Further, the mim 

index is purely additive — it does not modify the original 

gzipped FASTQ file in any way, nor require that the file be 

recompressed or rewritten — and thus it does not require 

converting the massive back catalog of existing raw sequenc­

ing data.

To demonstrate the feasibility and utility of the mim index, we 

benchmark construction of the mim index on a variety of ex­

isting gzipped FASTQ data, and also measure thread-scaling of 

mim index-assisted parallel FASTQ parsing on a simple parsing/

decompression-related task. We find that, for the one-time 

cost of index creation, and a small fraction of extra storage 

space, the mim index can massively accelerate the ingestion 

and parsing of gzipped FASTQ data, exhibiting near linear 

thread scaling in our experiments. mim is written in C++17, 

and is available as open source software under a BSD 3-clause 

license at https://github.com/COMBINE-lab/mim.
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1. Introduction
Originally introduced around the year 2000, the text-based 

FASTQ format quickly gained adoption as the lingua franca 

of primary (“raw”) sequencing data distribution. It was 

subsequently adopted by tools, and now is the common 

format used by tools from 𝑘-mer counters1–3, to read 

aligners4–7, to assemblers8–10, to transcript quantification 

tools11,12. The widespread adoption of the format has led 

to an inertia that has made it difficult to replace FASTQ with 

other formats that are more suitable to the massive scale 

of modern genomics data and the massively parallel char

acter of modern computer architectures and algorithms. 

Moreover, due to the verbose and text-based nature of the 

FASTQ format, these files are often stored and shared in 

gzip compressed form. The European Nucleotide Archive 

(ENA)13 currently contains approximately 63 Petabytes 

(PB) of data in the fastq.gz format.

While gzip compression drastically reduces the space re

quired to store these files, and can help reduce the I/O 

burden between the storage and a running process, it 

imposes further efficiency constraints on how quickly the 

data can be processed. The fundamentally serial nature 

of the gzip format — the fact that, by construction, it is 

designed only to be read start-to-end14 — stymies efforts 

at performing efficient parallel processing from raw data, 

making within-file parallel processing largely intractable.

The bottleneck of parallel decompression and pars­

ing. Combined with the fact that the development 

of new computational methods and pipelines leads to 

frequent re-processing of large collections of existing 

datasets, this means that a tremendous amount of time is 

wasted in decompressing and parsing data; for example, 

depending upon the hardware, lightweight tools for sin

gle-cell RNA-seq quantification12, or single-cell ATAC-seq 

quantification15,16 saturate in performance at 8-12 threads 

per input sample, yet continue to scale near linearly if the 

input is spread across multiple samples. Thus, this decom

pression and parsing task becomes a bottleneck when the 

tools being developed and adopted are increasingly fast 

and parallel. Some of these issues actually arise from the 

FASTQ format itself, but they are further exacerbated by 

dealing with gzipped versions of these files. Summarizing 

from Langmead et al.17, some of the main issues that limit 

parsing throughput include:

• Variable record lengths in FASTQ files can impede scaling 

because identifying these record boundaries needs to 

be done in a way that can maintain synchronization 

between files (e.g. in the case of paired-end reads);
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• Synchronization and locking while reading a single 

FASTQ file by many threads can significantly affect per

formance; existing methods can approach this through 

an explicit locking mechanism between workers, or 

by using a single-producer multi-consumer approach 

where a dedicated thread decompresses and parses 

records — both limit scalability;

• FASTQ files are often stored in gzipped compressed 

formats which prevents efficiently reading these files 

using many threads, since decompression is a sequential 

process.

The paper of Langmead et al.17 also provides a good analy

sis of these bottlenecks for FASTQ and gzipped FASTQ files.

Example. For example, it takes 104 minutes to compress 

a 132GB FASTQ file into 24GB FASTQ.gz, whereupon we 

loose the possibility of random access. Further, it takes 12 

minutes to decompress and parse this file. In fact, it takes 

9.5 minutes to simply decompress this file, without pars

ing, which, due to its sequential nature, can not be sped 

up using multiple threads without substantial overhead. 

This single-threaded decompression can be the main 

bottleneck in modern data-processing algorithms, which 

do benefit from multi-threading and parallelization, and 

often make use of SIMD instructions. Our index solves this 

by creating checkpoints every 32MB (by default), so that 

multiple threads can work on decompression and parsing 

in parallel without global locks. In our example, this 

speeds up the decompression and parsing from 12 minutes 

to just 37 seconds using 24 threads.

Challenges with gzip. With continued advancements in 

sequencing, the amount of data being generated, and the 

corresponding sizes of the FASTQ files being produced is 

increasing. For example, Kerbiriou et al.18 show that gzip 

achieves a good size reduction for FASTQ files while still 

offering reasonably fast decompression. However, reading 

data from a compressed archive is still a relatively slow 

process, with gunzip, the decompressor component of 

gzip, yielding data at about 50-250 MB/sec, which is one to 

two orders of magnitude lower than the read throughput 

of current SATA/NVMe solid-state drives, depending on 

the technology.

The gzip application uses the DEFLATE algorithm19,20 to 

compress and decompress binary data. DEFLATE consists 

of two stages. In the first stage, the data is processed se

quentially and LZ7721 parsing is performed. This encodes 

the data as a sequence of literals and (off,length) pairs. 

(off,length) is the offset and length of the longest prefix 

in preceding 32KB context that can be used to replace 

data at this location. Once the LZ77 parsing is complete, 

Huffman coding22 is performed to further encode the data 

compactly. The Huffman code trees are reset every block 

to give best results. DEFLATE decompression is the opposite 

process — the compressed data is decoded by Huffman 

decoding. This writes down the data in a 32KB circular 

buffer, which is then used by LZ77 decoding to decompress 

the data entirely. The sequential nature of the compression 

and decompression strategy adopted by DEFLATE makes 

random access, or even parallel decompression, using 

compressed FASTQ files hard.

Block compression. Block compression in this format is 

possible, whereupon files are first broken into chunks, and 

then these chunks are compressed separately. In fact, this 

approach was pioneered in the bioinformatics community 

with the development and adoption of the BGZF format23. 

This can allow parallel decompression of the compressed 

file, but it raises additional issues. First, such an approach 

can negatively affect the compression quality obtained 

by the compression algorithm (though, depending on the 

specific input and the quality of the compression chosen, 

this is not always the case practically). Second, even if 

blocks are compressed independently, there is no guaran

tee that they are “record aligned” (i.e. that chunks start 

and end on FASTQ record boundaries, or that the blocks 

in paired-end files are synchronized and each contain the 

same number of records). Finally, this approach requires 

the file to be compressed using this approach itself, which 

is true of some but certainly not all existing compressed 

FASTQ files. The solution we present here works equally 

well with BGZF compressed FASTQ files as with standard 

gzip compressed FASTQ files.

Semantic checkpoints. The compression and decom

pression algorithms used in gzip are inherently serial. 

As such, existing FASTQ parsers can only begin reading 

starting from the beginning of each compressed FASTQ file. 

However, if we know the relevant context of the compres

sor (32KB of uncompressed data before the checkpoint 

of interest), then we can then start decompressing only 

from that point onward. This is the core idea behind our 

method. We create certain “checkpoints” in the file that 

are approximately evenly-spaced with respect to the un­

compressed text. For each checkpoint, we store the infor

mation necessary to begin decompression directly at this 

checkpoint. Likewise, to give semantic meaning to these 

checkpoints, we also store the rank of the first read record 

that begins at or past this checkpoint, and the byte offset 

where this read starts beyond the checkpoint. Using this 

idea, we can have multiple threads read the compressed 

FASTQ file, where each thread starts processing from a 

checkpoint and reads some number of records. Moreover, 

we can jump to arbitrary checkpoints within multiple files, 

allowing us to perform a quick “synchronization” in the 
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context of e.g. paired-end reads, whereby many threads 

can subsequently process the reads independently after 

this initial between-file synchronization.

The mim index. We have developed mim, a tool that creates 

an index over gzip compressed FASTQ files, as well as mim-

parser, a corresponding (C++) FASTQ parsing library that 

uses this index to be able to read the compressed FASTQ 

file in parallel from multiple threads. The idea is to incur 

a one-time cost of building the index, which then signif

icantly accelerates parsing compressed FASTQ files in the 

future. The mim index is per-file, and so index-creation can 

be trivially parallelized across datasets. Further, although 

not yet implemented in our library, it is easy to build 

the mim index as a byproduct of reading an existing gzip 

compressed FASTQ file. We envision that the mim index can 

be shared alongside the FASTQ files in repositories like the 

European Nucleotide Archive13, which amortizes the cost 

of the index creation. Moreover, as the index is purely 

“auxiliary”, it can be used in tools that take advantage 

of it without any negative backward compatibility conse

quences for existing tools that are unaware of this index. 

Finally, the index itself encodes a cryptographic (blake3)24 

hash of the file on which it has been constructed, which 

enables uniquely binding an index to a source FASTQ file 

allowing, e.g., content-based systems transparently fetch

ing these indices from a remote source. When running a 

simple task such as counting the number of occurrences 

of each nucleotide in a fastq.gz file, the mim index enables 

near-linear speedup with the number of used worker 

threads.

2. Related Work
There are several tools and methods related to mim and 

what is proposed here, but none of them achieve precisely 

the same aim or strike the same balance. First, there 

has been substantial effort put into parsers that are well-

engineered and efficient, and several that take advantage 

of multiple threads when the input consists of multiple 

samples/files. Second, there are several tools that have 

been developed to enable parallel decompression of exist

ing (un-modified) gzipped files. These approaches require 

no modification of the original file, nor do they require the 

construction of an index over the file. Finally, there have 

been proposals to replace (gzipped) FASTQ wholesale, with 

formats better designed for efficient parsing and for more 

modern architectures and algorithms.

Efficient (gzipped) FASTQ Parsers. Before being 

processed, the gzipped FASTQ records must be decom

pressed and parsed, and considerable engineering opti

mization has been put into efficient libraries for this 

purpose. For example, the popular, single-threaded kseq26 

library can be used for this purpose, and it provides 

a highly-efficient parser implementation, written in C, 

that can work transparently over either a compressed or 

uncompressed input. This library has been wrapped and 

made available in other languages such as Python. A fresh 

@SRR28439552.1 E100075258L1C001R00200000008/1 
CAGGCGCAATGGGCAGATCGCACAAAAAGAGTCAAATTTCTGGAGGAGTGAATCA 
+ 
??????????????????????????????????????????????????????? 

@SRR28439552.2 E100075258L1C001R00200000015/1 
GTCAGGTGAGCCGCAGATCGCACATAATGGTTTGGCTAAGGTTGCCTGGT 
+ 
?????????????????????????????????????????????????? 
@SRR28439552.3 E100075258L1C001R00200000196/1 
CTATTCAATCGCGCAGATCGCACATGGATGTGAGGGCGATCTGGCTGCGACATCTGTCACCCCATT 
+ 
?????????????????????????????????????????????????????????????????? 

@SRR28439552.4 E100075258L1C001R00200000284/1 
CCTTGCGCAGGCGCAGATCGCACATTGGGGGAAGGGAGCTTTCAC 
+ 
????????????????????????????????????????????? 
@SRR28439552.5 E100075258L1C001R00200000320/1 
TAATAAGGGCGGGCAGATCGCACACTGGGCCGTGACTGAGGGTCTTGGCTGGAAAGGA 
+ 
??????????????????????????????????????????????????????????

…

…

…

Compressed offset: 0

Uncompressed offset: 0

Decoder state: <..>

Bytes to next record: 0

Next record rank: 0


Compressed offset: 13,346,913

Uncompressed offset: 32,321,156

Decoder state: <..>

Bytes to next record: 36

Next record rank: 216,156


Compressed offset: 25,924,312

Uncompressed offset: 64,183,554

Decoder state: <..>

Bytes to next record: 51

Next record rank: 433,154


…

mim

Figure 1:  Overview of the structure of the mim index. Several checkpoints are shown, along with the important information they retain. The logo 

for Gzip is taken from25.
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implementation of kseq, written in modern C++ is available 

in the kseq++27 library.

Since decompression is inherently sequential, most multi-

threaded libraries use a producer-consumer approach. For 

example, FQFeeder28 uses one thread per input file (or 

file pair FASTQ parsing) and uses kseq++27 for the under

lying parser; multiple input sets can be decompressed in 

parallel, but the the degree of parallel decompression and 

parsing possible is limited by the number of samples (files 

or file pairs) being parsed. The producer threads decom

press and parse the records, and place batches of parsed 

FASTQ records onto a concurrent queue. Consumer threads 

then take these batches of parsed records and perform the 

actual computation (e.g. alignment, quality assessment, 

etc.). A similar strategy is followed by RabbitFX29, which 

also has additional optimizations, as well as by Rust 

libraries seq_io30 and paraseq31.

While these parsers focus on efficiency, they lack the abil

ity to decompress and parse input from individual gzipped 

FASTQ files in a highly parallel manner. With these ap

proaches, the producer thread pool cannot meaningfully 

have more threads than the number of files being parsed 

(since each file is decompressed and parsed sequentially). 

We see that this as the major scalability bottleneck for 

pipelines relying on this approach, a bottleneck that our 

tool solves.

Parallel gzip decompression algorithms. pugz32 is 

a parallel algorithm that enables fast decompression of 

gzipped files. It can achieve this by being able to decom

press from a random offset by creating the fully decom

pressed 32KB context using a two-pass heuristic approach. 

The 32KB context can be constructed almost always at 

low compression levels, while some approximations are 

needed at higher levels. rapidgzip14 expands upon pugz 

by improving the heuristic used for speculative decoding, 

as well as by improving the parallelization and cache 

efficiency of the underlying algorithm. Both pugz and 

rapidgzip can substantially improve the decompression 

speed of gzipped files, including gzipped FASTQ file. How

ever, this improvement in decompression speed comes at 

a considerable cost of extra computation; as a non-trivial 

amount of the speculative decoding ends up in wasted 

work. The rapidgzip tool also exposes an “index” mode, 

whereby an extra index aids in parallel decompression of 

the file. While this approach is similar to our approach 

(and to that of the block gzip format with an index), it 

differs in that rapidgzip is a generic method, and therefore 

lacks a semantically aware index like mim which both en

ables synchronized decompression between related files 

(e.g. ends of paired-end reads) and allows lock-free and 

wait-free parsing of the underlying content, since mim 

checkpoints are, by construction, aligned to record bound

aries.

Modified gzip archives. mgzip and pgzip are Python 

libraries built on Python’s zlib and gzip wrappers. 

pgzip33, is a maintained fork of mgzip34, and compresses 

uncompressed buffers by breaking them into blocks, and 

compressing each block independently in parallel. The 

metadata of all blocks is inserted into the FEXTRA field 

within the gzip file. This allows for parallel decompression 

by reading this metadata. While they maintain backward 

compatibility with gzip (i.e. the gzip utility can decom

press the generated gzip file), they generate a different 

gzip file due to independent block compression. Thus, 

adopting such an approach requires re-compressing the 

data in this specialized format. Likewise, as with the index 

adopted by rapidgzip, the blocks of pgzip and mzip are 

not aware of the semantics of the underlying file, and 

therefore not necessarily aligned with records.

A related approach is that taken by the Blocked GNU Zip 

Format (BGZF)35. In this format, small chunks of the origi

nal file (≤ 64KB) are compressed independently as blocks 

with a fresh compressor state for each block. This allows 

the blocks to be decompressed in parallel. The BGZF for

mat essentially represents a multi-archive gzip file where 

the independently compressed blocks are concatenated 

together (which constitutes a valid gzip file). The header 

of each BGZF block also contains extra information about 

the length of the compressed block. The BGZF format is also 

designed to support an index, which is a simple list of off

set pairs specifying the position in the compressed stream 

of the start of each block, as well as the uncompressed 

position to which it corresponds, this makes it easy to jump 

to and decompress individual blocks, as well as to perform 

random access within the compressed file. While the BGZF 

format (with default parameters) does make an effort to 

be somewhat semantically aware of the underlying data 

being encoded (i.e. the specification states that “bgzip will 

attempt to ensure BGZF blocks end on a newline when 

the input is a text file.”), it still lacks specific information 

about the ranks of the underlying reads. Moreover, there 

is no guarantee that a newline boundary corresponds to 

the start or end of an entire read record (e.g. FASTQ records 

typically span 4 lines, and (non-multi-line) FASTA records 

span 2). This, therefore, makes it impossible to properly 

align multiple BGZF-compressed files and to process them 

in parallel in a synchronized fashion (as is necessary e.g. 

with paired-end reads). Likewise, while the BGZF index is 

very simple and also very small, it relies on this special 

structure of BGZF, and so it is not applicable on general 

gzip compressed FASTQ files, as is mim.
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Alternative storage formats. While the approaches 

above all focus on either maintaining existing gzip 

archives as-is, or generating special variants of gzip 

archives that are more amenable to random access or 

parallel decompression, researchers have also considered 

what might be possible if the gzip and FASTQ formats 

themselves could be replaced as a source of raw data 

storage and transfer. For example, the Nucleotide Archival 

Format (NAF)36, describes a format designed to be smaller 

and simultaneously faster to decompress than gzipped 

FASTQ files.

Recently, the Binseq37 family of formats (comprising BQ 

and VBQ) was proposed. These formats specifically focus on 

encoding high-throughput sequencing data in a manner 

that can be processed in parallel (i.e. either by enforcing 

fixed-size records in BQ format, or by adopting a record-

aligned block/chunk compressed structure in VBQ format). 

These approaches enable, by design, massively parallel 

decompression and parsing, and can achieve precisely 

the types of speedups we hope to enable. Yet, for the 

NAF format and the Binseq format family, as well as 

for related alternative approaches, the main impediments 

are twofold. First, these formats are not well-represented 

in the massive existing repository of sequencing data, 

and the conversion of all prior data into these more effi

cient formats would be a massive undertaking. Likewise, 

tremendous care would have to be taken to ensure that 

no important aspects of the existing data were lost in 

the process, for example, due to unexpected errors during 

conversion or potential bugs or corner cases in the encoder 

for the new format. With the purely auxiliary mim index, 

the original file is only ever read (not rewritten or modi

fied), and so even a failure to index runs no risk of losing 

information from the original file. Second, even if this con

version was undertaken successfully, the vast majority of 

existing bioinformatics tools do not support these formats 

yet (and many never will), and so, to retain the utility of the 

vast repository of existing data, one would likely still have 

to repeatedly convert from these newer formats back into 

FASTQ or gzipped FASTQ when processing with legacy tools. 

This burden may be minimized if the conversion itself is 

lightweight and fast, and if the downstream tool being tar

geted is capable of consuming input from a FIFO or named 

pipe. On the other hand, the approach we propose main

tains full backward compatibility by default (the source 

files are unchanged, and the mim index is purely auxiliary). 

Thus, no large-scale conversion need be performed, the 

existing repository of available data can be retained as it 

currently exists, and no intermediate conversion is neces

sary to allow data to be ingested by existing tools. New 

tools can choose to take advantage of the auxiliary index 

we propose in an iterative fashion, and legacy tools can be 

retrofitted, as desired, to do so.

3. Our Approach

3.1. The mim index

In this section we describe the design for mim, the index 

structure we use to enable parallel parsing of gzipped 

FASTQ files.

3.1.1. The zran index

The mim index builds upon the zran index. zran is an 

example application that appears in the source tree of the 

zlib38 library. zran demonstrates the use of certain zlib 

API features to enable accessing a gzip-compressed file 

from a random offset.

It accomplishes this by fully decompressing the file, and 

building an index containing “access points” (which we 

henceforth call checkpoints) at approximately equally-

spaced locations, as shown in Figure 2. Each checkpoint 

includes the starting file offset, relevant metadata about 

the current deflate block, and the necessary data to exactly 

reproduce the state of the decoder at this checkpoint (i.e. 

the decoder’s context). This index is then used to fetch 

some number of bytes from an arbitrary, user-provided lo

cation in the original gzip file (starting at the most-recent 

checkpoint prior to the desired location). This program 

does not save or load the index from disk, but rather stores 

it in memory for a one-time random fetch (zran is, after 

all, an example and not a full application).

3.1.2. Augmenting zran for sequencing data

FASTQ and FASTA files contain records that are not of fixed 

size, and so each record can span a variable number of 

bytes. The mim index and mim-parser handle both FASTQ 

and FASTA files, but here we will focus only on FASTQ for 

ease of exposition.

Any application that reads gzipped FASTQ files efficiently 

in parallel needs to be able to (1) distribute work over 

multiple threads (2) move the parsing of records outside of 

any critical section of the program and (3) ensure that the 

work assigned to different workers can be decompressed 

efficiently in parallel. To achieve these capabilities, the 

mim index augments zran’s index to support record-aligned 

access.

We achieve this by maintaining, for each zran checkpoint, 

two additional pieces of metadata; (1) the byte offset of 

the first record occurring at or after this checkpoint, i.e. 

how far from the checkpoint, in the uncompressed stream, 

one must read to encounter the start of the first complete 

record in this chunk, and (2) the record rank correspond

ing to this record, i.e. starting from 0, how many records 
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Figure  2:  Schematic example of the mim index. A 224MB FASTQ file (top, grey) supports random access, but its 80MB gzipped fastq.gz 

representation (bottom left, dark red) does not. The mim index makes a checkpoint (black bars) after approximately every 32MB of plain text. For 

each checkpoint, it stores the internal state of the gzip decompressor, which consists mostly of the last (up to) 32kB of sequence (vertical yellow 

bars, not to scale), and some small metadata (not shown). The data for all checkpoints is concatenated with the metadata and gzipped to obtain 

the mim index file (bottom right, bright red). To read the fastq.gz file in parallel, the mim index is first decompressed to obtain the checkpoint data. 

Then, each thread is assigned a range of 32MB blocks and can decompresses and parse this range by initializing the decompressor with the 

checkpoint data.

have we seen prior to this one in the uncompressed stream. 

To compute this auxiliary information, we augmented the 

kseq++27 parser to store, for each parsed record, the byte 

offset from the start of the file until the record start posi

tion. This “semantic” mapping, that puts zran checkpoints 

into correspondence with specific reads and stores check

point-local offset from the start of the next record, is built 

directly after the original zran index is built, and is stored 

alongside the standard zran index as a list of checkpoints. 

Figure 1 shows an overview of the mim index.

We store, along with our index, a cryptographic hash of 

the content of the compressed file. Specifically, we store the 

blake324 hash of the compressed file content. We envision 

this data is being useful for two reasons. First, we hope, in 

the future, to be able to host mim indexes for a wide variety 

of publicly available datasets online. Having a distinct 

content-based key will make it easy for mim enabled parsers 

to automatically and transparently download and use the 

mim index for a file if it is available (and if the user wants 

to permit this behavior). Second, this provides a failsafe 

against accidentally using the wrong mim index with a gzip 

file to which it does not correspond. While attempting to 

parse a gzipped FASTQ file in parallel using a mismatched 

mim index will anyway likely lead to a failure to parse, the 

checksum adds an extra level of certainty.

Finally, the index can, upon creation, embed user-pro

vided metadata. This metadata is provided as a JSON39 

object (serialized in the index header in CBOR40 format). 

This allows the user to tag the index with useful descrip

tors, relevant provenance information, or other details that 

should be linked to the associated file.

3.1.3. Aspects of the mim index

In order for the index to be useful, the compressed file 

needs to have a sufficient number of checkpoints to sat

urate many parsing threads. Specifically, we want each 

chunk not to be too large, as, when we need to synchronize 

records between files (e.g. for the case of paired-end pars

ing), we may need, in the worst case, to decompress and 

discard up to one chunk’s worth of data in each thread. 

Of course, having more chunks and more checkpoints 

makes the index itself larger on disk, though we mitigate 

this somewhat by compressing the index itself on disk 

when we store it. When building the mim index, the span 

(average number of uncompressed bytes between stored 

checkpoints), is a user-controllable parameter that deter

mines the number of checkpoints that will be stored. We 

set a default span of 32MB, and that is the span size used 

for all data presented in this manuscript.

Ultimately, we observe the size of the index to be very 

small; ∼ 0.1% of the size of the compressed data file 

itself in most cases, since each checkpoint is around 

32KiB (∼ 32MB/1000, despite the change in base). In 

cases where the input file is actually already a BGZF 

file (i.e. was bgzip compressed), we find the index 

to be even smaller (0.0003% of the size of the file 

for pbmc_10k_v3_S1_L001_R2_001, or only about 96B per 

checkpoint). This is because zran chooses its checkpoints 

naturally to align with the bgzip chunks (each of which is 

typically much smaller than the chunk size in our index). 

Since each bgzip chunk requires no additional context to 

decompress, our index collapses to store basically just the 

auxiliary chunk to read offset and read rank information.

Index creation itself requires decompressing and parsing 

the original input file, plus a small amount of bookkeep
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ing to construct the zran and auxiliary index itself. Thus, 

the time to create the mim index is only about ∼ 20% 

larger than the time required to simply parse the gzip-

compressed FASTQ file. We note here that we have not 

made an attempt to optimize the mim index creation, and 

it can, almost certainly, be done in a single pass over the 

input file. Further, this index creation cost is is a one time 

cost. Therefore, we believe that this is a reasonable trade-

off. Once created, the indices themselves are very small 

(the largest we encountered in our testing was ∼ 25MB, 

and load within a fraction of a second. Statistics concern

ing the index sizes and how they relate to the original files 

are given in Table 1.

3.2. mim-parser

Next, we describe our design for the parallel parser that 

reads gzipped FASTQ files taking advantage of the mim 

index. One major benefit of the approach described above 

is that obtaining disjoint and independent, record-aligned 

chunks of the input file, requires almost no synchroniza

tion. In our parser, upon loading the initial index, the 

parser evaluates the number of chunks in the input file 

in light of the number of parallel worker threads that 

have been registered. It then assigns contiguous intervals 

of chunks to the worker threads such that the number 

of chunks handled by each worker is as even as possible. 

After this initial assignment of chunk intervals, no syn­

chronization is required between the worker threads. Each 

consumer/worker thread retains a read-only reference to 

the mim index, it jumps to the beginning of the chunk inter

val it was assigned, and determines the number of records 

that it is requested to process. This value is obtained by 

subtracting the rank of the first read it is assigned (i.e. the 

read at the start of its first assigned chunk) from the rank 

of the first read in the chunk after its assigned interval. 

Then, each worker simply begins reading and parsing the 

input file from its assigned location, and yielding records 

until it has produced the requested number of records.

The records that are read are parsed using kseq++27 and 

converted into a C++ structure that can be used by down

stream tasks. Specifically, we have made a wrapper for 

kseq++‘s input stream type to allow it to read directly from 

a particular offset in a gzip file where the decompressor 

state has been properly primed by an index checkpoint. 

This is possible because the kseq++ parser provides a 

user-implementable input stream interface that need only 

implement the ability to obtain a requested number of 

bytes of uncompressed data from the input stream. Specif

ically, we open the gzip file, seek to the appropriate 

compressed offset, and prime the decompressor with the 

necessary dictionary state. Then, we determine, based on 

the record-level information associated with this check

point, how many bytes we must discard before the first 

read record occurs. We read and discard this number of 

bytes, and subsequently the file can be read by this worker 

thread, from the start of a record, directly as if it is reading 

from a normal gzip compressed stream (our stream read

ing implementation automatically handles appropriately 

skipping gzip headers in a BGZF file or in a multi-part gzip 

archive).

The parsing of paired-end read files proceeds in a similar 

manner but is slightly more sophisticated. Here, the chal

lenge is that the parsing of records between the two files 

must be synchronized so that, e.g. the rank 𝑘 read from 

file 1 is parsed and returned along with the rank 𝑘 read 

from file 2. To achieve this, the indices for both files are 

opened, and the intervals of chunks are assigned to the 

worker threads, based on the chunks in read file 1, just as 

described above. Now, each worker knows what range of 

reads it will parse and produce from file 1. Let 𝑟 be the 

rank of the first read that will be parser from file 1 by 

worker 𝑤. Next, for this worker, a search is conducted over 

the checkpoints in the index for file 2 to find the chunk 

starting with the highest ranking read ≤ 𝑟. Let this chunk 

in file 2 be called 𝑐, and let the rank of the first read in this 

chunk be 𝑟′. The worker then opens the second gzip file 

starting at chunk 𝑐, discards the bytes prior to the start of 

read 𝑟′, and then parses and discards 𝑟 − 𝑟′ read records. 

At this point, the worker is situated at the same rank read 

in files 1 and 2, and it can simply process the records 

from these files in sequence (and independent of all other 

workers) until it has processed the prescribed number of 

reads. This initial synchronization means that some small 

number of records may be read and parsed more than once 

(e.g. discarded by one worker to obtain synchronization, 

while properly yielded by another as part of its assigned 

work interval). Nonetheless, this constitutes only a small 

amount of extra work once per thread (per file), and in 

practice represents negligeable overhead. We note that it 

would be possible to design a mim index directly for paired-

end reads that records the exact points and offsets in the 

file pair for reads of matching ranks, eliminating this small 

amount of extra work. However, we decided against such 

an approach, as we find the current approach simpler. 

For example, the process of index creation is independent 

for each compressed file, and a file can be indexed (and 

parsed) independently of the file with which it is paired. 

Likewise, The approach we adopt can easily and naturally 

be extended to file sets of arbitrary arity using their inde

pendently computed indices (e.g. to single-cell ATAC-seq 

data which might require sets of 3 files that are parsed in 

a synchronized manner).

Patro et al. | mim index | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint 

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Evaluation
In this section, we discuss our experimental setup and the 

results for benchmarking mim and mim-parser. All exper

iments were performed on a single server with two Intel 

Xeon E5-2699 v4 2.20 GHz CPUs having 44 cores, 512 GB 

of 2.40 GHz DDR4 RAM, and a number of 3.6 TB Toshiba 

MG03ACA4 ATA HDDs. The system is running with 

Ubuntu 20.04 GNU/Linux 5.4.0-172-generic. The running 

times are measured with the GNU time command. To col

lect the running times, the initial single-threaded parsing 

was performed first, and the command was issued twice 

recording only the timing of the second run, to ensure a 

warm cache. Subsequently, the times were recorded for the 

same sample for the remaining thread counts.

4.1. Experimental setup

We seek to evaluate our approach with respect to two 

critical criteria: (a) Evaluate how lightweight the mim index 

is, and (b) determine how much speedup can be achieved 

via this kind of parallelism.

For the first aspect, we evaluate the index creation times 

and index sizes for a range of FASTQ files of different sizes 

(and characteristics).

For the evaluation, we kept the span of checkpoints to 

be constant (every 32, 000, 000 uncompressed bytes in the 

underlying stream), which generated different index sizes 

for different FASTQ files. Ideally, we may want to optimize 

checkpoint placement for a given file size or file structure – 

as for large files, this span between checkpoints generates 

many more checkpoints than we need to obtain maximal 

parallelism — but we leave this for future work. Nonethe

less, this sampling rate between checkpoints leads to 

indices that are about 1
1000 -th the size of the original file, 

with little variance observed over these datasets.

To evaluate the speedups we can achieve with mim-parser, 

we run mim-parser on 11 different FASTQ files (including 2 

files that constitute a paired-end dataset, which we process 

both individually and as a synchronized pair), with details 

given inTable  1. These data represent a collection of 

different assay types (e.g. metagenomic sequencing, ChIP-

seq, RNA-seq), read lengths, data ages and file sizes, with 

sizes ranging from ∼ 400MB (compressed) to ∼ 24GB 

(compressed). We run the parser in each case varying the 

number of threads from 2 through 24.

To keep the focus on the speed of parsing and not any 

computation done with the parsed data, the downstream 

task used for benchmarking is a simple task of counting 

the number of occurrences of each nucleotide across all 

of the records in each of the FASTQ files. We compare our 

tool’s performance with a sequential reader using the same 

underlying parsing library.

4.2. Results

4.2.1. Evaluating mim index

Table  1 shows the index size for FASTQ files of different 

sizes. The index size is about 0.1% of the size of the 

original (compressed) FASTQ file. Of course, this index size 

can be controlled by changing the desired number of bytes 

between checkpoints (for all experiments here, we use 

32, 000, 000 bytes between checkpoints).

In Table 2, we also report index creation times. On average, 

index creation takes ∼ 1.2 × as long as simply parsing the 

file with a single thread. This is expected, as index creation 

is (currently) a single-threaded process that has to stream 

dataset (.fastq.gz) size (GB) # of checkpoints mim index size (MB) size reduction

SRR28048028 0.390 74 0.407 958×

SRR28028283_1 2.47 617 2.59 954×

SRR28028283_2 2.51 617 2.63 952×

SRR28439552_1 3.62 704 3.74 967×

ERR1190770_2 4.06 346 4.19 970×

SRR9331208_1 7.93 992 8.13 974×

SRR13060943_2 8.56 907 8.80 972×

ENCFF000FFF 8.84 869 9.10 971×

SRR26865528_2 18.4 3902 19.2 959×

SRR28896749_1 24.7 4428 25.5 965×

pbmc_10k_v3_S1_L001_R2_001* 16.7 2420 0.0473 353 154×

Table 1: The size of each dataset evaluated and the size of the corresponding mim index and the relative size of the mim index as a percentage 

of the original file. The pbmc file, designated with a *, was block compressed using bgzip.
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parsing (s) construction (s)

threads
dataset

1 2 4 8 12 16 20 24

SRR28048028 11.9 5.87 3.11 1.79 1.33 0.990 0.800 0.790 13.2

SRR28028283_1 91.9 42.2 21.9 12.0 8.71 6.91 5.63 4.82 93.3

SRR28028283_2 92.6 42.1 22.0 12.1 8.71 6.88 5.61 4.95 95.1

SRR28028283 (pair) 188 85.9 44.8 24.8 17.9 14.4 11.7 9.82 -

SRR28439552_1 117 54.7 28.3 15.5 11.2 8.89 7.26 6.21 123

ERR1190770_2 78.9 38.5 19.8 11.0 7.74 6.18 5.15 4.33 105

SRR9331208_1 206 98.6 51.9 28.4 20.3 16.0 13.0 11.1 259

SRR13060943_2 195 94.6 49.0 26.9 19.1 15.2 12.5 10.5 232

ENCFF000FFF 194 92.3 48.1 26.1 18.8 14.9 12.2 10.3 250

SRR26865528_2 606 283 146 79.0 56.3 45.7 37.1 30.9 651

SRR28896749_1 727 338 176 96.3 68.4 54.7 44.6 36.8 899

pbmc_10k_v3_S1_L001_R2_001 459 217 112 61.5 43.7 34.9 28.3 24.1 543

Table 2: Time required to construct the mim index and to compute the nucleotide sums using the mim-parser with varying numbers of threads.

over the file twice; once, without any parsing to generate 

the zran checkpoints, and again with parsing to generate 

the semantic information for each checkpoint. Optimiza

tion of the index creation step is one concrete direction 

for future work. However, we believe that the current 

index creation speed is already acceptable, as it is a one-

time cost and will be amortized over many instances of 

processing the resulting files. Further, since index creation 

is completely independent per file (even for files that are 

paired in sequencing), the process of index creation can be 

trivially parallelized over separate files.

4.2.2. Evaluating mim-parser

Figure 3 shows the scaling results for mim-parser on the set 

of FASTQ files listed in Table 1. We can see that mim-parser 

scales near linearly with the number of worker threads for 

Figure 3:  Scaling results for mim-parser. The plot shows the speedup of processing with 𝑡 threads compared to 1 thread for each file while 

varying 𝑡 from 2 to 24. The plotted value is simply the time to process that file taken by 1 thread divided by the time take with 𝑡 threads. The 

black dashed line represents theoretically optimal scaling, where the speedup is simply 𝑡. Note that SRR2848028 is the smallest file, and, though 

it has more than 24 checkpoints, the total execution time with 24 threads is only 0.79 seconds, so speedup is limited by other factors like index 

reading, initial work assignment, etc.).
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these files, at least up through about 8 threads, where we 

likely start to hit the limits of the HDDs being used in these 

experiments.

5. Future Work
One substantial potential area for future optimizations is 

determining an optimal policy for the size of mim index (i.e. 

how to place checkpoints). Since the mim index builds on 

zran’s index construction algorithm, we currently create 

checkpoints that are separated by approximately the span 

requested by the user. However, once one has substantially 

more checkpoints than parsing threads that will ever be 

used (e.g. when one has at least a few hundred check

points), the creation of further checkpoints is likely of 

diminishing utility (though it may provide some benefit 

in speeding up the initial synchronization in paired-end 

parsing). Thus, a policy that determines how to place 

“enough” checkpoints, and where they should be placed, 

has the potential to make the mim index even smaller. 

We also store a mapping of record boundaries to their 

respective byte offsets in the gzipped file. One potential 

optimization that may be possible is to construct check

points exactly at record boundaries, so that these two data 

structures can be represented as one, helping us further 

reduce the size of the index.

Another area for potential improvement is a more efficient 

construction of the mim index itself. While the current 

construction takes only small memory and is linear in the 

size of the file being indexed, the index should, in theory, 

be possible to construct in a single pass. Moreover parts 

of the construction (e.g. the computation of the blake3 

hash) may even be possible to parallelize. We believe that 

the index is efficient enough to begin constructing at 

scale now for the vast catalog of existing data, but further 

optimization of the construction algorithm will certainly 

help reduce the time and financial resources required to 

perform this indexing.

Independent of index construction, our current parsing 

strategy breaks the compressed file into approximately 

equal intervals of data, and has each worker thread process 

its own interval independently. While this is very likely to 

work well in the vast majority of cases, one might imagine 

scenarios where equal quantities of input reads result in 

an unequal distribution of work in a downstream task 

(e.g. perhaps the user is performing alignment and some 

region of a file is enriched for reads that align to repetitive 

parts of the reference sequence). Alternative load balanc

ing strategies are possible. For example, instead of each 

thread being assigned an approximately equal region of 

the file such that all regions cover the entire input, each 

thread could be assigned a disjoint region of the file such 

that the sum of all regions (all of which still start at a 

checkpoint) are much smaller than the total file length. In 

this case, when a thread is done with its assigned region, it 

can consult the parser for the next available region, etc. As 

the regions are made smaller, the work is broken up in a 

more fine-grained way, and the strategy naturally adapts to 

ensure that worker threads are not starved. Such a strategy 

requires marginally more coordination, but that is likely 

to be negligeable.

Perhaps the most impactful line of immediate work will 

be to begin computing and hosting mim indexes for pub

licly deposited sequencing data. While we can begin this 

process on a small scale using resources available to us, 

it would be ideal to run mim index creation in a massively 

parallel manner in the cloud, akin to how, e.g. the Logan 

project41 made use of AWS to perform unitig and contig as

sembly of the entire SRA42. Along with this computation 

of the mim index over the existing catalog of sequencing 

data, it will also be useful to provide a remote hosting 

of these indices so that they can easily be obtained given 

just the accession number of the corresponding read files. 

Even better, given the content-based cryptographic hash 

embedded in each mim index (i.e. the blake3 hash com

puted from the compressed representation of the data), we 

would like to add to our parser library the optional ability 

to transparently download and use a mim index for a FASTQ 

file if one is available. The unique content addressability 

of the index based on the file makes this possible.

Finally, the current mim-parser implementation is written 

in C++17 and usable by any tool capable of adopting this 

language. This is a reasonable choice for a first implemen

tation given the prevalence of C++ in the development of 

tools for high-throughput genomics processing. However, 

an increasing number of new high-performance genomics 

tools are being written in Rust, and we would like to pro

vide a Rust implementation of a mim-parser (or to provide 

the requisite functionality as a crate that can be used by 

existing Rust FASTQ parsers). Likewise, we would also like 

to develop and expose Python bindings for the Rust imple

mentation, to provide even broader support for using the 

mim index.

6. Conclusion
This work addresses a substantial bottleneck faced by 

many tools that need to process and parse raw sequence 

genomics data. We present the mim index, a lightweight, 

supplementary index that accompanies a gzipped FASTQ 

file and enables truly parallel decompression and parsing 

of the file by a large number of threads.

To demonstrate the utility of this index, we also provide 

an implementation of mim-parser, a multi-threaded FASTQ 
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parser that achieves a near-linear speedup compared to 

serial parsing. By using the mim index, each of the workers 

in mim-parser can parse disjoint ranges of records within 

a compressed FASTQ file in parallel, and provide them for 

downstream processing. Our results show that mim-parser 

achieves strong scaling as we increase the number of 

workers. Moreover, the structure of the mim index allows 

the parallel decompression and parsing even of synchro

nized (e.g. paired-end) files, and this is also supported by 

mim-parser.

A key benefit of the mim index is that it is purely additive / 

auxiliary. That is, it does not require modifying or recom

pression of the source FASTQ files in any way. This means 

that adoption can be performed incrementally, and that 

pipelines can freely mix tools that support mim index en

hanced parsing with those that don’t. Further, the indexes 

are small, easy to store and transfer, and have a strong 

built-in mechanism for correctness validation. Despite its 

relatively simple strategy, our proposed approach enables 

much better utilization of available modern hardware in 

the processing of raw sequencing data, and can lead to 

substantial performance gains for existing tools and algo

rithms that are currently bottlenecked on I/O and parsing. 

When a sufficient number of threads are available, this 

includes some of the most ubiquitous and common pro

cessing, like read alignment17. In summary, we hope that 

researchers find the mim index and mim-parser useful in 

speeding up their workflows, cutting costs, making better 

use of modern parallel hardware, and potentially making 

prohibitive tasks more accessible.
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