bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mim: A lightweight auxiliary index to enable
fast, parallel, gzipped FASTQ parsing

Rob Patro'?, Siddhant Bharti', Prajwal Singhania', Rakrish Dhakal', Thomas J. Dahlstrom and Ragnar Groot Koerkamp

"Department of Computer Science, University of Maryland, College Park, MD 20742, United States
2Center for Bioinformatics and Computational Biology, University of Maryland

The FASTQ file format is the lingua franca of primary data
distribution and processing across most of bioinformatics.
Over time, the compression, storage, transmission, and de-
compression of gzip compressed fastq.gz files has become
a substantial scalability bottleneck in the modern world of
fast and massively parallel genomics tools and algorithms.

In this work, we introduce mim: a lightweight, auxiliary index
that enables fast, parallel, and highly-scalable parsing of
compressed fastq.gz files. The creation of the mim index for
a file is a one-time operation that can be performed in time
comparable to that of simply decompressing and parsing
the file (index creation induces ~ 20% overhead) and with
minimal working memory. The mim index itself is very small,
usually about Tloo'th of the size of the original compressed
file, and can be easily stored along side the file or fetched
from a remote location when it is needed. Further, the mim
index is purely additive — it does not modify the original
gzipped FASTQ file in any way, nor require that the file be
recompressed or rewritten — and thus it does not require
converting the massive back catalog of existing raw sequenc-
ing data.

To demonstrate the feasibility and utility of the mimindex, we
benchmark construction of the mim index on a variety of ex-
isting gzipped FASTQ data, and also measure thread-scaling of
mimindex-assisted parallel FASTQ parsing on a simple parsing/
decompression-related task. We find that, for the one-time
cost of index creation, and a small fraction of extra storage
space, the mim index can massively accelerate the ingestion
and parsing of gzipped FASTQ data, exhibiting near linear
thread scaling in our experiments. mim is written in C++17,
and is available as open source software under a BSD 3-clause
license at https://github.com/COMBINE-lab/mim.

FASTQ | parsing | parallel | compression | genomics | sequencing

rob@cs.umd.edu

1. Introduction

Originally introduced around the year 2000, the text-based
FASTQ format quickly gained adoption as the lingua franca
of primary (“raw”) sequencing data distribution. It was
subsequently adopted by tools, and now is the common
format used by tools from k-mer countersl3, to read
aligners#77, to assemblers810, to transcript quantification
toolsi12, The widespread adoption of the format has led

to an inertia that has made it difficult to replace FASTQ with
other formats that are more suitable to the massive scale
of modern genomics data and the massively parallel char-
acter of modern computer architectures and algorithms.
Moreover, due to the verbose and text-based nature of the
FASTQ format, these files are often stored and shared in
gzip compressed form. The European Nucleotide Archive
(ENA)I3 currently contains approximately 63 Petabytes
(PB) of data in the fastq.gz format.

While gzip compression drastically reduces the space re-
quired to store these files, and can help reduce the I/O
burden between the storage and a running process, it
imposes further efficiency constraints on how quickly the
data can be processed. The fundamentally serial nature
of the gzip format — the fact that, by construction, it is
designed only to be read start-to-end14 — stymies efforts
at performing efficient parallel processing from raw data,
making within-file parallel processing largely intractable.

The bottleneck of parallel decompression and pars-
ing. Combined with the fact that the development
of new computational methods and pipelines leads to
frequent re-processing of large collections of existing
datasets, this means that a tremendous amount of time is
wasted in decompressing and parsing data; for example,
depending upon the hardware, lightweight tools for sin-
gle-cell RNA-seq quantification!2, or single-cell ATAC-seq
quantification!>16 saturate in performance at 8-12 threads
per input sample, yet continue to scale near linearly if the
input is spread across multiple samples. Thus, this decom-
pression and parsing task becomes a bottleneck when the
tools being developed and adopted are increasingly fast
and parallel. Some of these issues actually arise from the
FASTQ format itself, but they are further exacerbated by
dealing with gzipped versions of these files. Summarizing
from Langmead et al.17, some of the main issues that limit
parsing throughput include:

« Variable record lengths in FASTQ files can impede scaling
because identifying these record boundaries needs to
be done in a way that can maintain synchronization
between files (e.g. in the case of paired-end reads);

Patro et al. | mim index | 1

https://github.com/COMBINE-lab/mim
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

 Synchronization and locking while reading a single
FASTQ file by many threads can significantly affect per-
formance; existing methods can approach this through
an explicit locking mechanism between workers, or
by using a single-producer multi-consumer approach
where a dedicated thread decompresses and parses
records — both limit scalability;

« FASTQ files are often stored in gzipped compressed
formats which prevents efficiently reading these files
using many threads, since decompression is a sequential
process.

The paper of Langmead et al.17 also provides a good analy-
sis of these bottlenecks for FASTQ and gzipped FASTQ files.

Example. For example, it takes 104 minutes to compress
a 132GB FASTQ file into 24GB FASTQ.gz, whereupon we
loose the possibility of random access. Further, it takes 12
minutes to decompress and parse this file. In fact, it takes
9.5 minutes to simply decompress this file, without pars-
ing, which, due to its sequential nature, can not be sped
up using multiple threads without substantial overhead.
This single-threaded decompression can be the main
bottleneck in modern data-processing algorithms, which
do benefit from multi-threading and parallelization, and
often make use of SIMD instructions. Our index solves this
by creating checkpoints every 32MB (by default), so that
multiple threads can work on decompression and parsing
in parallel without global locks. In our example, this
speeds up the decompression and parsing from 12 minutes
to just 37 seconds using 24 threads.

Challenges with gzip. With continued advancements in
sequencing, the amount of data being generated, and the
corresponding sizes of the FASTQ files being produced is
increasing. For example, Kerbiriou et al.18 show that gzip
achieves a good size reduction for FASTQ files while still
offering reasonably fast decompression. However, reading
data from a compressed archive is still a relatively slow
process, with gungip, the decompressor component of
gzip, yielding data at about 50-250 MB/sec, which is one to
two orders of magnitude lower than the read throughput
of current SATA/NVMe solid-state drives, depending on
the technology.

The gzip application uses the DEFLATE algorithm!920 to
compress and decompress binary data. DEFLATE consists
of two stages. In the first stage, the data is processed se-
quentially and LZ772! parsing is performed. This encodes
the data as a sequence of literals and (off,length) pairs.
(off,length) is the offset and length of the longest prefix
in preceding 32KB context that can be used to replace
data at this location. Once the LZ77 parsing is complete,
Huffman coding?? is performed to further encode the data

compactly. The Huffman code trees are reset every block
to give best results. DEFLATE decompression is the opposite
process — the compressed data is decoded by Huffman
decoding. This writes down the data in a 32KB circular
buffer, which is then used by LZ77 decoding to decompress
the data entirely. The sequential nature of the compression
and decompression strategy adopted by DEFLATE makes
random access, or even parallel decompression, using
compressed FASTQ files hard.

Block compression. Block compression in this format is
possible, whereupon files are first broken into chunks, and
then these chunks are compressed separately. In fact, this
approach was pioneered in the bioinformatics community
with the development and adoption of the BGZF format?23.
This can allow parallel decompression of the compressed
file, but it raises additional issues. First, such an approach
can negatively affect the compression quality obtained
by the compression algorithm (though, depending on the
specific input and the quality of the compression chosen,
this is not always the case practically). Second, even if
blocks are compressed independently, there is no guaran-
tee that they are “record aligned” (i.e. that chunks start
and end on FASTQ record boundaries, or that the blocks
in paired-end files are synchronized and each contain the
same number of records). Finally, this approach requires
the file to be compressed using this approach itself, which
is true of some but certainly not all existing compressed
FASTQ files. The solution we present here works equally
well with BGZF compressed FASTQ files as with standard
gzip compressed FASTQ files.

Semantic checkpoints. The compression and decom-
pression algorithms used in gzip are inherently serial.
As such, existing FASTQ parsers can only begin reading
starting from the beginning of each compressed FASTQ file.
However, if we know the relevant context of the compres-
sor (32KB of uncompressed data before the checkpoint
of interest), then we can then start decompressing only
from that point onward. This is the core idea behind our
method. We create certain “checkpoints” in the file that
are approximately evenly-spaced with respect to the un-
compressed text. For each checkpoint, we store the infor-
mation necessary to begin decompression directly at this
checkpoint. Likewise, to give semantic meaning to these
checkpoints, we also store the rank of the first read record
that begins at or past this checkpoint, and the byte offset
where this read starts beyond the checkpoint. Using this
idea, we can have multiple threads read the compressed
FASTQ file, where each thread starts processing from a
checkpoint and reads some number of records. Moreover,
we can jump to arbitrary checkpoints within multiple files,
allowing us to perform a quick “synchronization” in the

Patro et al. | mim index | 2

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

context of e.g. paired-end reads, whereby many threads
can subsequently process the reads independently after
this initial between-file synchronization.

The mim index. We have developed mim, a tool that creates
an index over gzip compressed FASTQ files, as well as mim-
parser, a corresponding (C++) FASTQ parsing library that
uses this index to be able to read the compressed FASTQ
file in parallel from multiple threads. The idea is to incur
a one-time cost of building the index, which then signif-
icantly accelerates parsing compressed FASTQ files in the
future. The mim index is per-file, and so index-creation can
be trivially parallelized across datasets. Further, although
not yet implemented in our library, it is easy to build
the mim index as a byproduct of reading an existing gzip
compressed FASTQ file. We envision that the mim index can
be shared alongside the FASTQ files in repositories like the
European Nucleotide Archivel3, which amortizes the cost
of the index creation. Moreover, as the index is purely
“auxiliary”, it can be used in tools that take advantage
of it without any negative backward compatibility conse-
quences for existing tools that are unaware of this index.
Finally, the index itself encodes a cryptographic (blake3)24
hash of the file on which it has been constructed, which
enables uniquely binding an index to a source FASTQ file
allowing, e.g., content-based systems transparently fetch-
ing these indices from a remote source. When running a
simple task such as counting the number of occurrences
of each nucleotide in a fastq. gz file, the mim index enables

-—

— ' SRR28439552.1 E100075258L1C001R00200000008/1
CAGGCGCAATGGGCAGATCGCACAAAAAGAGTCAAATTTCTGGAGGAGTGAATCA
¥

222

@SRR28439552.2 E100075258L1C001R00200000015/1
GTCAGGTGAGCCGCAGATCGCACATAATGGTTTGGCTAAGG

222222222222227222222222222222222222222222222222

@SRR28439552.3 E100075258L1C001R00200000196/1
CTATTCAATCGCGCAGATCGCACATGGATGTGAGGGCGATCTGGCTGCGACATCTGTCACCCCATT
o
22

@SRR28439552.4 E100075258L1C001R00200000284/1
CCTTGCGCAGGCGCAGATCGCACATTGGGGGAAGGGAGCTTTIAC
"

222

@SRR28439552.5 E100075258L1C001R00200000320/1
TAATAAGGGCGGGCAGATCGCACACTGGGCCGTGACTGAGGGTCTTGGCTGGAAAGGA

+
22

N y

near-linear speedup with the number of used worker
threads.

2. Related Work

There are several tools and methods related to mim and
what is proposed here, but none of them achieve precisely
the same aim or strike the same balance. First, there
has been substantial effort put into parsers that are well-
engineered and efficient, and several that take advantage
of multiple threads when the input consists of multiple
samples/files. Second, there are several tools that have
been developed to enable parallel decompression of exist-
ing (un-modified) gzipped files. These approaches require
no modification of the original file, nor do they require the
construction of an index over the file. Finally, there have
been proposals to replace (gzipped) FASTQ wholesale, with
formats better designed for efficient parsing and for more
modern architectures and algorithms.

Efficient (gzipped) FASTQ Parsers. Before being
processed, the gzipped FASTQ records must be decom-
pressed and parsed, and considerable engineering opti-
mization has been put into efficient libraries for this
purpose. For example, the popular, single-threaded kseq?26
library can be used for this purpose, and it provides
a highly-efficient parser implementation, written in C,
that can work transparently over either a compressed or
uncompressed input. This library has been wrapped and
made available in other languages such as Python. A fresh

Compressed offset: 13,346,913 !
Uncompressed offset: 32,321,156
Decoder state: <..> :
Bytes to next record: 36

Next record rank: 216,156

Figure 1: Overview of the structure of the mim index. Several checkpoints are shown, along with the important information they retain. The logo
for Gzip is taken from®.

Patro et al. | mim index | 3

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

implementation of kseq, written in modern C++is available
in the kseq++27 library.

Since decompression is inherently sequential, most multi-
threaded libraries use a producer-consumer approach. For
example, FQFeeder28 uses one thread per input file (or
file pair FASTQ parsing) and uses kseg++27 for the under-
lying parser; multiple input sets can be decompressed in
parallel, but the the degree of parallel decompression and
parsing possible is limited by the number of samples (files
or file pairs) being parsed. The producer threads decom-
press and parse the records, and place batches of parsed
FASTQ records onto a concurrent queue. Consumer threads
then take these batches of parsed records and perform the
actual computation (e.g. alignment, quality assessment,
etc.). A similar strategy is followed by RabbitFX29, which
also has additional optimizations, as well as by Rust
libraries seq_i03% and paraseq3L.

While these parsers focus on efficiency, they lack the abil-
ity to decompress and parse input from individual gzipped
FASTQ files in a highly parallel manner. With these ap-
proaches, the producer thread pool cannot meaningfully
have more threads than the number of files being parsed
(since each file is decompressed and parsed sequentially).
We see that this as the major scalability bottleneck for
pipelines relying on this approach, a bottleneck that our
tool solves.

Parallel gzip decompression algorithms. pugz3? is
a parallel algorithm that enables fast decompression of
gzipped files. It can achieve this by being able to decom-
press from a random offset by creating the fully decom-
pressed 32KB context using a two-pass heuristic approach.
The 32KB context can be constructed almost always at
low compression levels, while some approximations are
needed at higher levels. rapidgzip!4 expands upon pugz
by improving the heuristic used for speculative decoding,
as well as by improving the parallelization and cache
efficiency of the underlying algorithm. Both pugz and
rapidgzip can substantially improve the decompression
speed of gzipped files, including gzipped FASTQ file. How-
ever, this improvement in decompression speed comes at
a considerable cost of extra computation; as a non-trivial
amount of the speculative decoding ends up in wasted
work. The rapidgzip tool also exposes an “index” mode,
whereby an extra index aids in parallel decompression of
the file. While this approach is similar to our approach
(and to that of the block gzip format with an index), it
differsin that rapidgzip is a generic method, and therefore
lacks a semantically aware index like mim which both en-
ables synchronized decompression between related files
(e.g. ends of paired-end reads) and allows lock-free and
wait-free parsing of the underlying content, since mim

checkpoints are, by construction, aligned to record bound-
aries.

Modified gzip archives. mgzip and pgzip are Python
libraries built on Python’s zlib and gzip wrappers.
pgzip33, is a maintained fork of mgzip34, and compresses
uncompressed buffers by breaking them into blocks, and
compressing each block independently in parallel. The
metadata of all blocks is inserted into the FEXTRA field
within the gzip file. This allows for parallel decompression
by reading this metadata. While they maintain backward
compatibility with gzip (i.e. the gzip utility can decom-
press the generated gzip file), they generate a different
gzip file due to independent block compression. Thus,
adopting such an approach requires re-compressing the
data in this specialized format. Likewise, as with the index
adopted by rapidgzip, the blocks of pgzip and mzip are
not aware of the semantics of the underlying file, and
therefore not necessarily aligned with records.

A related approach is that taken by the Blocked GNU Zip
Format (BGZF)3>. In this format, small chunks of the origi-
nal file (< 64KB) are compressed independently as blocks
with a fresh compressor state for each block. This allows
the blocks to be decompressed in parallel. The BGzF for-
mat essentially represents a multi-archive gzip file where
the independently compressed blocks are concatenated
together (which constitutes a valid gzip file). The header
of each BGZF block also contains extra information about
the length of the compressed block. The BGZF format is also
designed to support an index, which is a simple list of off-
set pairs specifying the position in the compressed stream
of the start of each block, as well as the uncompressed
position to which it corresponds, this makes it easy to jump
to and decompress individual blocks, as well as to perform
random access within the compressed file. While the BGZF
format (with default parameters) does make an effort to
be somewhat semantically aware of the underlying data
being encoded (i.e. the specification states that “bgzip will
attempt to ensure BGZF blocks end on a newline when
the input is a text file.”), it still lacks specific information
about the ranks of the underlying reads. Moreover, there
is no guarantee that a newline boundary corresponds to
the start or end of an entire read record (e.g. FASTQ records
typically span 4 lines, and (non-multi-line) FASTA records
span 2). This, therefore, makes it impossible to properly
align multiple BGZF-compressed files and to process them
in parallel in a synchronized fashion (as is necessary e.g.
with paired-end reads). Likewise, while the BGZF index is
very simple and also very small, it relies on this special
structure of BGZF, and so it is not applicable on general
gzip compressed FASTQ files, as is mim.

Patro et al. | mim index | 4

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Alternative storage formats. While the approaches
above all focus on either maintaining existing gzip
archives as-is, or generating special variants of gzip
archives that are more amenable to random access or
parallel decompression, researchers have also considered
what might be possible if the gzip and FASTQ formats
themselves could be replaced as a source of raw data
storage and transfer. For example, the Nucleotide Archival
Format (NAF)36, describes a format designed to be smaller
and simultaneously faster to decompress than gzipped
FASTQ files.

Recently, the Binseq3’ family of formats (comprising BQ
and VBQ) was proposed. These formats specifically focus on
encoding high-throughput sequencing data in a manner
that can be processed in parallel (i.e. either by enforcing
fixed-size records in BQ format, or by adopting a record-
aligned block/chunk compressed structure in VBQ format).
These approaches enable, by design, massively parallel
decompression and parsing, and can achieve precisely
the types of speedups we hope to enable. Yet, for the
NAF format and the Binseq format family, as well as
for related alternative approaches, the main impediments
are twofold. First, these formats are not well-represented
in the massive existing repository of sequencing data,
and the conversion of all prior data into these more effi-
cient formats would be a massive undertaking. Likewise,
tremendous care would have to be taken to ensure that
no important aspects of the existing data were lost in
the process, for example, due to unexpected errors during
conversion or potential bugs or corner cases in the encoder
for the new format. With the purely auxiliary mim index,
the original file is only ever read (not rewritten or modi-
fied), and so even a failure to index runs no risk of losing
information from the original file. Second, even if this con-
version was undertaken successfully, the vast majority of
existing bioinformatics tools do not support these formats
yet (and many never will), and so, to retain the utility of the
vast repository of existing data, one would likely still have
to repeatedly convert from these newer formats back into
FASTQ or gzipped FASTQ when processing with legacy tools.
This burden may be minimized if the conversion itself is
lightweight and fast, and if the downstream tool being tar-
geted is capable of consuming input from a FIFO or named
pipe. On the other hand, the approach we propose main-
tains full backward compatibility by default (the source
files are unchanged, and the mim index is purely auxiliary).
Thus, no large-scale conversion need be performed, the
existing repository of available data can be retained as it
currently exists, and no intermediate conversion is neces-
sary to allow data to be ingested by existing tools. New
tools can choose to take advantage of the auxiliary index

we propose in an iterative fashion, and legacy tools can be
retrofitted, as desired, to do so.

3. Our Approach

3.1. The mim index

In this section we describe the design for mim, the index
structure we use to enable parallel parsing of gzipped
FASTQ files.

3.1.1. The zran index

The mim index builds upon the zran index. zran is an
example application that appears in the source tree of the
z1ib38 library. zran demonstrates the use of certain zlib
API features to enable accessing a gzip-compressed file
from a random offset.

It accomplishes this by fully decompressing the file, and
building an index containing “access points” (which we
henceforth call checkpoints) at approximately equally-
spaced locations, as shown in Figure 2. Each checkpoint
includes the starting file offset, relevant metadata about
the current deflate block, and the necessary data to exactly
reproduce the state of the decoder at this checkpoint (i.e.
the decoder’s context). This index is then used to fetch
some number of bytes from an arbitrary, user-provided lo-
cation in the original gzip file (starting at the most-recent
checkpoint prior to the desired location). This program
does not save or load the index from disk, but rather stores
it in memory for a one-time random fetch (zran is, after
all, an example and not a full application).

3.1.2. Augmenting zran for sequencing data

FASTQ and FASTA files contain records that are not of fixed
size, and so each record can span a variable number of
bytes. The mim index and mim-parser handle both FASTQ
and FASTA files, but here we will focus only on FASTQ for
ease of exposition.

Any application that reads gzipped FASTQ files efficiently
in parallel needs to be able to (1) distribute work over
multiple threads (2) move the parsing of records outside of
any critical section of the program and (3) ensure that the
work assigned to different workers can be decompressed
efficiently in parallel. To achieve these capabilities, the
mimindex augments zran’s index to support record-aligned
access.

We achieve this by maintaining, for each zran checkpoint,
two additional pieces of metadata; (1) the byte offset of
the first record occurring at or after this checkpoint, i.e.
how far from the checkpoint, in the uncompressed stream,
one must read to encounter the start of the first complete
record in this chunk, and (2) the record rank correspond-
ing to this record, i.e. starting from 0, how many records

Patro et al. | mim index | 5

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

224MB .fastq

32kB chleckpoint

32MB

[’I/

e
—_—

,/ H:[m 192kB of checkpoints

/
o e o

80MB .fastq.gz

hYd

80kB .mim index

Figure 2: Schematic example of the mim index. A 224MB FAsTQ file (top, grey) supports random access, but its 80MB gzipped fastq.gz

representation (bottom left, dark red) does not. The mim index makes a checkpoint (black bars) after approximately every 32MB of plain text. For

each checkpoint, it stores the internal state of the gzip decompressor, which consists mostly of the last (up to) 32kB of sequence (vertical yellow

bars, not to scale), and some small metadata (not shown). The data for all checkpoints is concatenated with the metadata and gzipped to obtain

the mim index file (bottom right, bright red). To read the fastq. gz file in parallel, the mim index is first decompressed to obtain the checkpoint data.

Then, each thread is assigned a range of 32MB blocks and can decompresses and parse this range by initializing the decompressor with the
checkpoint data.

have we seen prior to this one in the uncompressed stream.
To compute this auxiliary information, we augmented the
kseq++27 parser to store, for each parsed record, the byte
offset from the start of the file until the record start posi-
tion. This “semantic” mapping, that puts zran checkpoints
into correspondence with specific reads and stores check-
point-local offset from the start of the next record, is built
directly after the original zran index is built, and is stored
alongside the standard zran index as a list of checkpoints.
Figure 1 shows an overview of the mim index.

We store, along with our index, a cryptographic hash of
the content of the compressed file. Specifically, we store the
blake324 hash of the compressed file content. We envision
this data is being useful for two reasons. First, we hope, in
the future, to be able to host mim indexes for a wide variety
of publicly available datasets online. Having a distinct
content-based key will make it easy for mim enabled parsers
to automatically and transparently download and use the
mim index for a file if it is available (and if the user wants
to permit this behavior). Second, this provides a failsafe
against accidentally using the wrong mim index with a gzip
file to which it does not correspond. While attempting to
parse a gzipped FASTQ file in parallel using a mismatched
mim index will anyway likely lead to a failure to parse, the
checksum adds an extra level of certainty.

Finally, the index can, upon creation, embed user-pro-
vided metadata. This metadata is provided as a JSON39
object (serialized in the index header in CBOR40 format).
This allows the user to tag the index with useful descrip-
tors, relevant provenance information, or other details that
should be linked to the associated file.

3.1.3. Aspects of the mim index

In order for the index to be useful, the compressed file
needs to have a sufficient number of checkpoints to sat-
urate many parsing threads. Specifically, we want each
chunk not to be too large, as, when we need to synchronize
records between files (e.g. for the case of paired-end pars-
ing), we may need, in the worst case, to decompress and
discard up to one chunk’s worth of data in each thread.
Of course, having more chunks and more checkpoints
makes the index itself larger on disk, though we mitigate
this somewhat by compressing the index itself on disk
when we store it. When building the mim index, the span
(average number of uncompressed bytes between stored
checkpoints), is a user-controllable parameter that deter-
mines the number of checkpoints that will be stored. We
set a default span of 32MB, and that is the span size used
for all data presented in this manuscript.

Ultimately, we observe the size of the index to be very
small; ~ 0.1% of the size of the compressed data file
itself in most cases, since each checkpoint is around
32KiB (~ 32MB/1000, despite the change in base). In
cases where the input file is actually already a BGZF
file (i.e. was bgzip compressed), we find the index
to be even smaller (0.0003% of the size of the file
for pbmc 10k v3 S1 LOG1 R2 001, or only about 96B per
checkpoint). This is because zran chooses its checkpoints
naturally to align with the bgzip chunks (each of which is
typically much smaller than the chunk size in our index).
Since each bgzip chunk requires no additional context to
decompress, our index collapses to store basically just the
auxiliary chunk to read offset and read rank information.

Index creation itself requires decompressing and parsing
the original input file, plus a small amount of bookkeep-

Patro et al. | mim index | 6

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ing to construct the zran and auxiliary index itself. Thus,
the time to create the mim index is only about ~ 20%
larger than the time required to simply parse the gzip-
compressed FASTQ file. We note here that we have not
made an attempt to optimize the mim index creation, and
it can, almost certainly, be done in a single pass over the
input file. Further, this index creation cost is is a one time
cost. Therefore, we believe that this is a reasonable trade-
off. Once created, the indices themselves are very small
(the largest we encountered in our testing was ~ 25MB,
and load within a fraction of a second. Statistics concern-
ing the index sizes and how they relate to the original files
are given in Table 1.

3.2. mim-parser

Next, we describe our design for the parallel parser that
reads gzipped FASTQ files taking advantage of the mim
index. One major benefit of the approach described above
is that obtaining disjoint and independent, record-aligned
chunks of the input file, requires almost no synchroniza-
tion. In our parser, upon loading the initial index, the
parser evaluates the number of chunks in the input file
in light of the number of parallel worker threads that
have been registered. It then assigns contiguous intervals
of chunks to the worker threads such that the number
of chunks handled by each worker is as even as possible.
After this initial assignment of chunk intervals, no syn-
chronization is required between the worker threads. Each
consumer/worker thread retains a read-only reference to
the mim index, it jumps to the beginning of the chunk inter-
val it was assigned, and determines the number of records
that it is requested to process. This value is obtained by
subtracting the rank of the first read it is assigned (i.e. the
read at the start of its first assigned chunk) from the rank
of the first read in the chunk after its assigned interval.
Then, each worker simply begins reading and parsing the
input file from its assigned location, and yielding records
until it has produced the requested number of records.

The records that are read are parsed using kseq++27 and
converted into a C++ structure that can be used by down-
stream tasks. Specifically, we have made a wrapper for
kseg++‘s input stream type to allow it to read directly from
a particular offset in a gzip file where the decompressor
state has been properly primed by an index checkpoint.
This is possible because the kseq++ parser provides a
user-implementable input stream interface that need only
implement the ability to obtain a requested number of
bytes of uncompressed data from the input stream. Specif-
ically, we open the gzip file, seek to the appropriate
compressed offset, and prime the decompressor with the
necessary dictionary state. Then, we determine, based on
the record-level information associated with this check-

point, how many bytes we must discard before the first
read record occurs. We read and discard this number of
bytes, and subsequently the file can be read by this worker
thread, from the start of a record, directly as if it is reading
from a normal gzip compressed stream (our stream read-
ing implementation automatically handles appropriately
skipping gzip headers in a BGZF file or in a multi-part gzip
archive).

The parsing of paired-end read files proceeds in a similar
manner but is slightly more sophisticated. Here, the chal-
lenge is that the parsing of records between the two files
must be synchronized so that, e.g. the rank £ read from
file 1 is parsed and returned along with the rank & read
from file 2. To achieve this, the indices for both files are
opened, and the intervals of chunks are assigned to the
worker threads, based on the chunks in read file 1, just as
described above. Now, each worker knows what range of
reads it will parse and produce from file 1. Let r be the
rank of the first read that will be parser from file 1 by
worker w. Next, for this worker, a search is conducted over
the checkpoints in the index for file 2 to find the chunk
starting with the highest ranking read < r. Let this chunk
in file 2 be called ¢, and let the rank of the first read in this
chunk be 7’. The worker then opens the second gzip file
starting at chunk c, discards the bytes prior to the start of
read 7/, and then parses and discards r — r’ read records.
At this point, the worker is situated at the same rank read
in files 1 and 2, and it can simply process the records
from these files in sequence (and independent of all other
workers) until it has processed the prescribed number of
reads. This initial synchronization means that some small
number of records may be read and parsed more than once
(e.g. discarded by one worker to obtain synchronization,
while properly yielded by another as part of its assigned
work interval). Nonetheless, this constitutes only a small
amount of extra work once per thread (per file), and in
practice represents negligeable overhead. We note that it
would be possible to design a mim index directly for paired-
end reads that records the exact points and offsets in the
file pair for reads of matching ranks, eliminating this small
amount of extra work. However, we decided against such
an approach, as we find the current approach simpler.
For example, the process of index creation is independent
for each compressed file, and a file can be indexed (and
parsed) independently of the file with which it is paired.
Likewise, The approach we adopt can easily and naturally
be extended to file sets of arbitrary arity using their inde-
pendently computed indices (e.g. to single-cell ATAC-seq
data which might require sets of 3 files that are parsed in
a synchronized manner).

Patro et al. | mim index | 7

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4. Evaluation

In this section, we discuss our experimental setup and the
results for benchmarking mim and mim-parser. All exper-
iments were performed on a single server with two Intel
Xeon E5-2699 v4 2.20 GHz CPUs having 44 cores, 512 GB
of 2.40 GHz DDR4 RAM, and a number of 3.6 TB Toshiba
MGO3ACA4 ATA HDDs. The system is running with
Ubuntu 20.04 GNU/Linux 5.4.0-172-generic. The running
times are measured with the GNU time command. To col-
lect the running times, the initial single-threaded parsing
was performed first, and the command was issued twice
recording only the timing of the second run, to ensure a
warm cache. Subsequently, the times were recorded for the
same sample for the remaining thread counts.

4.1. Experimental setup

We seek to evaluate our approach with respect to two
critical criteria: (a) Evaluate how lightweight the mim index
is, and (b) determine how much speedup can be achieved
via this kind of parallelism.

For the first aspect, we evaluate the index creation times
and index sizes for a range of FASTQ files of different sizes
(and characteristics).

For the evaluation, we kept the span of checkpoints to
be constant (every 32, 000, 000 uncompressed bytes in the
underlying stream), which generated different index sizes
for different FASTQ files. Ideally, we may want to optimize
checkpoint placement for a given file size or file structure -
as for large files, this span between checkpoints generates
many more checkpoints than we need to obtain maximal
parallelism — but we leave this for future work. Nonethe-
less, this sampling rate between checkpoints leads to

indices that are about 3-s-th the size of the original file,

with little variance observed over these datasets.

To evaluate the speedups we can achieve with mim-parser,
we run mim-parser on 11 different FASTQ files (including 2
files that constitute a paired-end dataset, which we process
both individually and as a synchronized pair), with details
given inTable 1. These data represent a collection of
different assay types (e.g. metagenomic sequencing, ChIP-
seq, RNA-seq), read lengths, data ages and file sizes, with
sizes ranging from ~ 400MB (compressed) to ~ 24GB
(compressed). We run the parser in each case varying the
number of threads from 2 through 24.

To keep the focus on the speed of parsing and not any
computation done with the parsed data, the downstream
task used for benchmarking is a simple task of counting
the number of occurrences of each nucleotide across all
of the records in each of the FASTQ files. We compare our
tool’s performance with a sequential reader using the same
underlying parsing library.

4.2. Results

4.2.1. Evaluating mim index

Table 1 shows the index size for FASTQ files of different
sizes. The index size is about 0.1% of the size of the
original (compressed) FASTQ file. Of course, this index size
can be controlled by changing the desired number of bytes
between checkpoints (for all experiments here, we use
32,000, 000 bytes between checkpoints).

In Table 2, we also report index creation times. On average,
index creation takes ~ 1.2 x as long as simply parsing the
file with a single thread. This is expected, as index creation
is (currently) a single-threaded process that has to stream

dataset (. fastq.gz) size (GB) # of checkpoints mimindex size (MB) size reduction
SRR28048028 0.390 74 0.407 958 x
SRR28028283_1 2.47 617 2.59 954 x
SRR28028283_2 2.51 617 2.63 952 %
SRR28439552_1 3.62 704 3.74 967 x
ERR1190770_2 4.06 346 4.19 970
SRR9331208_1 7.93 992 8.13 974 %
SRR13060943_2 8.56 907 8.80 972 x
ENCFFOOOFFF 8.84 869 9.10 971x
SRR26865528_2 18.4 3902 19.2 959 x
SRR28896749_1 24.7 4428 25.5 965 x
pbmc_10k_v3_S1_L001_R2_001* 16.7 2420 0.0473 353 154 %

Table 1: The size of each dataset evaluated and the size of the corresponding mim index and the relative size of the mim index as a percentage
of the original file. The pbmc file, designated with a *, was block compressed using bgzip.

Patro et al. | mim index | 8

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

parsing (s) construction (s)
dataset threads 1 2 4 8 12 16 20 24
SRR28048028 11.9 5.87 311 179 1.33 0.990 0.800 0.790 13.2
SRR28028283_1 91.9 42.2 21.9 120 8.71 6.91 5.63 4.82 93.3
SRR28028283_2 92.6 42.1 22.0 12.1 8.71 6.88 5.61 4.95 95.1
SRR28028283 (pair) 188 85.9 448 248 179 144 11.7 9.82 =
SRR28439552_1 117 54.7 28.3 155 11.2 8.89 7.26 6.21 123
ERR1190770_2 789 385 19.8 11.0 7.74 6.18 5.15 4.33 105
SRR9331208_1 206 98.6 51.9 284 20.3 16.0 13.0 11.1 259
SRR13060943_2 195 94.6 49.0 269 19.1 152 12.5 10.5 232
ENCFFO00OFFF 194 92.3 48.1 26.1 188 149 12.2 10.3 250
SRR26865528_2 606 283 146 79.0 56.3 45.7 37.1 30.9 651
SRR28896749_1 727 338 176 96.3 68.4 54.7 44.6 36.8 899
pbmc_10k_v3_S1_L001_R2_001 459 217 112 61.5 43.7 34.9 28.3 24.1 543

Table 2: Time required to construct the mim index and to compute the nucleotide sums using the mim-parser with varying numbers of threads.

over the file twice; once, without any parsing to generate
the zran checkpoints, and again with parsing to generate
the semantic information for each checkpoint. Optimiza-
tion of the index creation step is one concrete direction
for future work. However, we believe that the current
index creation speed is already acceptable, as it is a one-
time cost and will be amortized over many instances of
processing the resulting files. Further, since index creation

s @ S &
))\!
\

(6)]

speedup (vs. 1 thread)
\
\
n
\
@

2 4 8 12 16
Number of Threads

20

is completely independent per file (even for files that are
paired in sequencing), the process of index creation can be
trivially parallelized over separate files.

4.2.2. Evaluating mim-parser

Figure 3 shows the scaling results for mim-parser on the set
of FASTQ files listed in Table 1. We can see that mim-parser
scales near linearly with the number of worker threads for

dataset
om SRR9331208 1
. SRR28028283 1
® e SRR28028283 2
—e— pbmc_10k_v3_S1_L001_R2_001
—e— SRR13060943 2
—e— ENCFFOOOFFF
SRR28048028
—e— SRR26865528 2
SRR28439552_1
—e— SRR28896749 1
o4 —— ERR1190770 2

-8 Theoretical scaling

Figure 3: Scaling results for mim-parser. The plot shows the speedup of processing with ¢ threads compared to 1 thread for each file while

varying t from 2 to 24. The plotted value is simply the time to process that file taken by 1 thread divided by the time take with ¢ threads. The

black dashed line represents theoretically optimal scaling, where the speedup is simply ¢. Note that SRR2848028 is the smallest file, and, though

it has more than 24 checkpoints, the total execution time with 24 threads is only 0.79 seconds, so speedup is limited by other factors like index
reading, initial work assignment, etc.).

Patro et al. | mim index | 9

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

these files, at least up through about 8 threads, where we
likely start to hit the limits of the HDDs being used in these
experiments.

5. Future Work

One substantial potential area for future optimizations is
determining an optimal policy for the size of mimindex (i.e.
how to place checkpoints). Since the mim index builds on
zran’s index construction algorithm, we currently create
checkpoints that are separated by approximately the span
requested by the user. However, once one has substantially
more checkpoints than parsing threads that will ever be
used (e.g. when one has at least a few hundred check-
points), the creation of further checkpoints is likely of
diminishing utility (though it may provide some benefit
in speeding up the initial synchronization in paired-end
parsing). Thus, a policy that determines how to place
“enough” checkpoints, and where they should be placed,
has the potential to make the mim index even smaller.
We also store a mapping of record boundaries to their
respective byte offsets in the gzipped file. One potential
optimization that may be possible is to construct check-
points exactly at record boundaries, so that these two data
structures can be represented as one, helping us further
reduce the size of the index.

Another area for potential improvement is a more efficient
construction of the mim index itself. While the current
construction takes only small memory and is linear in the
size of the file being indexed, the index should, in theory,
be possible to construct in a single pass. Moreover parts
of the construction (e.g. the computation of the blake3
hash) may even be possible to parallelize. We believe that
the index is efficient enough to begin constructing at
scale now for the vast catalog of existing data, but further
optimization of the construction algorithm will certainly
help reduce the time and financial resources required to
perform this indexing.

Independent of index construction, our current parsing
strategy breaks the compressed file into approximately
equal intervals of data, and has each worker thread process
its own interval independently. While this is very likely to
work well in the vast majority of cases, one might imagine
scenarios where equal quantities of input reads result in
an unequal distribution of work in a downstream task
(e.g. perhaps the user is performing alignment and some
region of a file is enriched for reads that align to repetitive
parts of the reference sequence). Alternative load balanc-
ing strategies are possible. For example, instead of each
thread being assigned an approximately equal region of
the file such that all regions cover the entire input, each
thread could be assigned a disjoint region of the file such

that the sum of all regions (all of which still start at a
checkpoint) are much smaller than the total file length. In
this case, when a thread is done with its assigned region, it
can consult the parser for the next available region, etc. As
the regions are made smaller, the work is broken up in a
more fine-grained way, and the strategy naturally adapts to
ensure that worker threads are not starved. Such a strategy
requires marginally more coordination, but that is likely
to be negligeable.

Perhaps the most impactful line of immediate work will
be to begin computing and hosting mim indexes for pub-
licly deposited sequencing data. While we can begin this
process on a small scale using resources available to us,
it would be ideal to run mim index creation in a massively
parallel manner in the cloud, akin to how, e.g. the Logan
project*! made use of AWS to perform unitig and contig as-
sembly of the entire SRA42. Along with this computation
of the mim index over the existing catalog of sequencing
data, it will also be useful to provide a remote hosting
of these indices so that they can easily be obtained given
just the accession number of the corresponding read files.
Even better, given the content-based cryptographic hash
embedded in each mim index (i.e. the blake3 hash com-
puted from the compressed representation of the data), we
would like to add to our parser library the optional ability
to transparently download and use a mim index for a FASTQ
file if one is available. The unique content addressability
of the index based on the file makes this possible.

Finally, the current mim-parser implementation is written
in C++17 and usable by any tool capable of adopting this
language. This is a reasonable choice for a first implemen-
tation given the prevalence of C++ in the development of
tools for high-throughput genomics processing. However,
an increasing number of new high-performance genomics
tools are being written in Rust, and we would like to pro-
vide a Rust implementation of a mim-parser (or to provide
the requisite functionality as a crate that can be used by
existing Rust FASTQ parsers). Likewise, we would also like
to develop and expose Python bindings for the Rust imple-
mentation, to provide even broader support for using the
mim index.

6. Conclusion

This work addresses a substantial bottleneck faced by
many tools that need to process and parse raw sequence
genomics data. We present the mim index, a lightweight,
supplementary index that accompanies a gzipped FASTQ
file and enables truly parallel decompression and parsing
of the file by a large number of threads.

To demonstrate the utility of this index, we also provide
an implementation of mim-parser, a multi-threaded FASTQ

Patro et al. | mim index | 10

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

parser that achieves a near-linear speedup compared to
serial parsing. By using the mim index, each of the workers
in mim-parser can parse disjoint ranges of records within
a compressed FASTQ file in parallel, and provide them for
downstream processing. Our results show that mim-parser
achieves strong scaling as we increase the number of
workers. Moreover, the structure of the mim index allows
the parallel decompression and parsing even of synchro-
nized (e.g. paired-end) files, and this is also supported by
mim-parser.

A key benefit of the mim index is that it is purely additive /
auxiliary. That is, it does not require modifying or recom-
pression of the source FASTQ files in any way. This means
that adoption can be performed incrementally, and that
pipelines can freely mix tools that support mim index en-
hanced parsing with those that don’t. Further, the indexes
are small, easy to store and transfer, and have a strong
built-in mechanism for correctness validation. Despite its
relatively simple strategy, our proposed approach enables
much better utilization of available modern hardware in
the processing of raw sequencing data, and can lead to
substantial performance gains for existing tools and algo-
rithms that are currently bottlenecked on I/O and parsing.
When a sufficient number of threads are available, this
includes some of the most ubiquitous and common pro-
cessing, like read alignment!?. In summary, we hope that
researchers find the mim index and mim-parser useful in
speeding up their workflows, cutting costs, making better
use of modern parallel hardware, and potentially making
prohibitive tasks more accessible.

Funding

This work was supported by the US National Institutes
of Health ROIHG009937 and by grants 2022-311195 and
2024-342821 from the Chan Zuckerberg Initiative DAF,
an advised fund of the Chan Zuckerberg Initiative Foun-
dation.

Acknowledgements

The authors wish to thank Noam Teyssier, and Bede
Constantinides for important conversations during the de-
velopment of the mim index and mim-parser parsing strate-
gies. The preliminary work that led to this project was
completed as a semester project for the class CMSC701 at
the University of Maryland, and Siddhant Bharti, Prajwal
Singhania, and Rakrish Dhakal wish to acknowledge the
Zaratan HPC cluster43 as an important resource in carry-
ing out that work. Finally, Rob Patro wishes to thank
Robert Aboukhalil, Robert A. Petit III, and Wytamma
Wirth for motivating him, during an animated discussion
at the CZI Open Science meeting, to pick this project back
up after a prolonged hiatus and finish it.

Declaration
R.P. is a co-founder of Ocean Genomics Inc.

References

1. Margais, G. & Kingsford, C. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 27,
764-770 (2011).

2. Kokot, M., Dtugosz, M. & Deorowicz, S. KMC 3: counting and ma-
nipulating k-mer statistics. Bioinformatics 33, 2759-2761 (2017).

3. Pandey, P, Bender, M. A,, Johnson, R. & Patro, R. Squeakr: an
exact and approximate k-mer counting system. Bioinformatics
34, 568-575 (2017).

4. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nature Methods 9, 357-359 (2012).

5. Li, H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. https://arxiv.org/abs/1303.3997 (2013)
doi:10.48550/ARXIV.1303.3997.

6. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioin-
formatics 29, 15-21 (2012).

7. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L.
Graph-based genome alignment and genotyping with HISAT2
and HISAT-genotype. Nature Biotechnology 37, 907-915 (2019).

8. Grabherr, M. G. et al. Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nature Biotechnol-
ogy 29, 644-652 (2011).

9. Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm
and Its Applications to Single-Cell Sequencing. Journal of Com-
putational Biology 19, 455-477 (2012).

10. Koren, S. et al. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome
Research 27, 722-736 (2017).

11. Patro, R., Duggal, G., Love, M. L., Irizarry, R. A. & Kingsford, C.
Salmon provides fast and bias-aware quantification of transcript
expression. Nature Methods 14, 417-419 (2017).

12. He, D. et al. Alevin-fry unlocks rapid, accurate and memory-frugal
quantification of single-cell RNA-seq data. Nature Methods 19,
316-322 (2022).

13. Yuan, D. et al. The European Nucleotide Archive in 2023. Nucleic
Acids Research 52, D92-d97 (2023).

14. Knespel, M. & Brunst, H. Rapidgzip: Parallel Decompression
and Seeking in Gzip Files Using Cache Prefetching. in Proceed-
ings of the 32nd International Symposium on High-Performance
Parallel and Distributed Computing 295-307 (Acm, 2023).
doi:10.1145/3588195.3592992.

15. Singh, N. P,, Khan, J. & Patro, R. Alevin-fry-atac enables rapid
and memory frugal mapping of single-cell ATAC-seq data using
virtual colors for accurate genomic pseudoalignment. Bioinfor-
matics 41, i237—-i245 (2025).

16. Zhang, H. et al. Fast alignment and preprocessing of chromatin
profiles with Chromap. Nature Communications 12, (2021).

17. Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling
read aligners to hundreds of threads on general-purpose proces-
sors. Bioinformatics 35, 421-432 (2019).

18. Kerbiriou, M. & Chikhi, R. Parallel decompression of gzip-com-
pressed files and random access to DNA sequences. in 2019

Patro et al. | mim index | 11

https://arxiv.org/abs/1303.3997
https://doi.org/10.48550/ARXIV.1303.3997
https://doi.org/10.1145/3588195.3592992
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.11.24.690271; this version posted November 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

19.
20.

21.

22.

23.
24.

25.

26.

27.

28.
29.

30.
31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

available under aCC-BY-NC-ND 4.0 International license.

IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW) 209-217 (2019).

W, K. P. String searcher, and compressor using same. (1991).

Deutsch, P. DEFLATE Compressed Data Format Specification
version 1.3. (1996). doi:10.17487/rfc1951.

Ziv, J. & Lempel, A. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 337—
343 (1977).

Huffman, D. A Method for the Construction of Minimum-Redun-
dancy Codes. Proceedings of the IRE 40, 1098—-1101 (1952).

Handsaker, B. & Li, H. bgzf. http://www.htslib.org/doc/bgzip.html.

BLAKE3 Team. blake3. https:/github.com/BLAKES3-team/
BLAKES (2025).

Flaticon. Flaticon. https://www.flaticon.com/free-icon/flying-
fish/_%206255787 ?term=flying+fish\&page=1\&position=3\&ori-
gin=search\&%20related_id=6255787 (2024).

Li, H. seqtk. https://github.com/Ih3/seqtk (2013).

Ghaffaari, A. kseg++. https:/github.com/cartoonist/kseqpp
(2025).

Patro, R. FQFeeder. https://github.com/rob-p/FQFeeder (2025).

Zhang, H. et al. RabbitFX: Efficient Framework for FASTA/Q
File Parsing on Modern Multi-Core Platforms. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 20, 2341—
2348 (2023).

Schlegel, M. seq_io. https://github.com/markschl/seq_io (2025).

Teyssier, N. paraseq. https://github.com/noamteyssier/paraseq
(2025).

Kerbiriou, M. & Chikhi, R. Parallel decompression of gzip-com-
pressed files and random access to DNA sequences. (2019)
doi:10.48550/ARXIV.1905.07224.

Huges, T. pgzip. https://github.com/pgzip/pgzip (2025).
Li, V. mgzip. https://github.com/vinlyx/mgzip (2025).

Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078—2079 (2009).

Kryukov, K., Ueda, M. T., Nakagawa, S. & Imanishi, T. Nucleotide
Archival Format (NAF) enables efficient lossless reference-free
compression of DNA sequences. Bioinformatics 35, 3826-3828
(2019).

Teyssier, N. & Dobin, A. BINSEQ: A Family of High-Per-
formance Binary Formats for Nucleotide Sequences. (2025)
doi:10.1101/2025.04.08.647863.

Gailly, J.-I. & Adler, M. zlib. https://www.zlib.net/ (2024).

Bray, T. The JavaScript Object Notation (JSON) Data Inter-
change Format. http://www.rfc-editor.org/rfc/rfc7159.ixt (2014).

Bormann, C. & Hoffman, P. Concise Binary Object Representa-
tion (CBOR). (2020).

Chikhi, R. et al. Logan: Planetary-Scale Genome
Assembly Surveys Life’s Diversity. bioRxiv (2025)
doi:10.1101/2024.07.30.605881.

Katz, K. et al. The Sequence Read Archive: a decade more
of explosive growth. Nucleic Acids Research 50, D387-D390
(2021).

43. Umd. The Zaratan HPC Cluster. https://hpcc.umd.edu/hpcc/

zaratan.html/.

Patro et al. | mim index | 12

https://doi.org/10.17487/rfc1951
http://www.htslib.org/doc/bgzip.html
https://github.com/BLAKE3-team/BLAKE3
https://github.com/BLAKE3-team/BLAKE3
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://github.com/lh3/seqtk
https://github.com/cartoonist/kseqpp
https://github.com/rob-p/FQFeeder
https://github.com/markschl/seq_io
https://github.com/noamteyssier/paraseq
https://doi.org/10.48550/ARXIV.1905.07224
https://github.com/pgzip/pgzip
https://github.com/vinlyx/mgzip
https://doi.org/10.1101/2025.04.08.647863
https://www.zlib.net/
http://www.rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.1101/2024.07.30.605881
https://hpcc.umd.edu/hpcc/zaratan.html/
https://hpcc.umd.edu/hpcc/zaratan.html/
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.0.0.1. The bottleneck of parallel decompression and parsing
	1.0.0.2. Example
	1.0.0.3. Challenges with gzip
	1.0.0.4. Block compression
	1.0.0.5. Semantic checkpoints
	1.0.0.6. The mim index

	2. Related Work
	2.0.0.1. Efficient (gzipped) FASTQ Parsers
	2.0.0.2. Parallel gzip decompression algorithms
	2.0.0.3. Modified gzip archives
	2.0.0.4. Alternative storage formats

	3. Our Approach
	3.1. The mim index
	3.1.1. The zran index
	3.1.2. Augmenting zran for sequencing data
	3.1.3. Aspects of the mim index

	3.2. mim-parser

	4. Evaluation
	4.1. Experimental setup
	4.2. Results
	4.2.1. Evaluating mim index
	4.2.2. Evaluating mim-parser

	5. Future Work
	6. Conclusion
	Funding
	Acknowledgements
	Declaration

	References

