
mim: A lightweight auxiliary index to enable

fast, parallel, gzipped FASTQ parsing

 Rob Patro1,2, Siddhant Bharti1, Prajwal Singhania1, Rakrish Dhakal1, Thomas J. Dahlstrom and Ragnar Groot Koerkamp

1Department of Computer Science, University of Maryland, College Park, MD 20742, United States
2Center for Bioinformatics and Computational Biology, University of Maryland

The FASTQ file format is the lingua franca of primary data

distribution and processing across most of bioinformatics.

Over time, the compression, storage, transmission, and de­

compression of gzip compressed fastq.gz files has become

a substantial scalability bottleneck in the modern world of

fast and massively parallel genomics tools and algorithms.

In this work, we introduce mim: a lightweight, auxiliary index

that enables fast, parallel, and highly-scalable parsing of

compressed fastq.gz files. The creation of the mim index for

a file is a one-time operation that can be performed in time

comparable to that of simply decompressing and parsing

the file (index creation induces ∼ 20% overhead) and with

minimal working memory. The mim index itself is very small,

usually about 1
1000 -th of the size of the original compressed

file, and can be easily stored along side the file or fetched

from a remote location when it is needed. Further, the mim

index is purely additive — it does not modify the original

gzipped FASTQ file in any way, nor require that the file be

recompressed or rewritten — and thus it does not require

converting the massive back catalog of existing raw sequenc­

ing data.

To demonstrate the feasibility and utility of the mim index, we

benchmark construction of the mim index on a variety of ex­

isting gzipped FASTQ data, and also measure thread-scaling of

mim index-assisted parallel FASTQ parsing on a simple parsing/

decompression-related task. We find that, for the one-time

cost of index creation, and a small fraction of extra storage

space, the mim index can massively accelerate the ingestion

and parsing of gzipped FASTQ data, exhibiting near linear

thread scaling in our experiments. mim is written in C++17,

and is available as open source software under a BSD 3-clause

license at https://github.com/COMBINE-lab/mim.

FASTQ | parsing | parallel | compression | genomics | sequencing

✉ rob@cs.umd.edu

1. Introduction
Originally introduced around the year 2000, the text-based

FASTQ format quickly gained adoption as the lingua franca

of primary (“raw”) sequencing data distribution. It was

subsequently adopted by tools, and now is the common

format used by tools from 𝑘-mer counters1–3, to read

aligners4–7, to assemblers8–10, to transcript quantification

tools11,12. The widespread adoption of the format has led

to an inertia that has made it difficult to replace FASTQ with

other formats that are more suitable to the massive scale

of modern genomics data and the massively parallel char

acter of modern computer architectures and algorithms.

Moreover, due to the verbose and text-based nature of the

FASTQ format, these files are often stored and shared in

gzip compressed form. The European Nucleotide Archive

(ENA)13 currently contains approximately 63 Petabytes

(PB) of data in the fastq.gz format.

While gzip compression drastically reduces the space re

quired to store these files, and can help reduce the I/O

burden between the storage and a running process, it

imposes further efficiency constraints on how quickly the

data can be processed. The fundamentally serial nature

of the gzip format — the fact that, by construction, it is

designed only to be read start-to-end14 — stymies efforts

at performing efficient parallel processing from raw data,

making within-file parallel processing largely intractable.

The bottleneck of parallel decompression and pars­

ing. Combined with the fact that the development

of new computational methods and pipelines leads to

frequent re-processing of large collections of existing

datasets, this means that a tremendous amount of time is

wasted in decompressing and parsing data; for example,

depending upon the hardware, lightweight tools for sin

gle-cell RNA-seq quantification12, or single-cell ATAC-seq

quantification15,16 saturate in performance at 8-12 threads

per input sample, yet continue to scale near linearly if the

input is spread across multiple samples. Thus, this decom

pression and parsing task becomes a bottleneck when the

tools being developed and adopted are increasingly fast

and parallel. Some of these issues actually arise from the

FASTQ format itself, but they are further exacerbated by

dealing with gzipped versions of these files. Summarizing

from Langmead et al.17, some of the main issues that limit

parsing throughput include:

• Variable record lengths in FASTQ files can impede scaling

because identifying these record boundaries needs to

be done in a way that can maintain synchronization

between files (e.g. in the case of paired-end reads);

Patro et al. | mim index | 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://github.com/COMBINE-lab/mim
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

• Synchronization and locking while reading a single

FASTQ file by many threads can significantly affect per

formance; existing methods can approach this through

an explicit locking mechanism between workers, or

by using a single-producer multi-consumer approach

where a dedicated thread decompresses and parses

records — both limit scalability;

• FASTQ files are often stored in gzipped compressed

formats which prevents efficiently reading these files

using many threads, since decompression is a sequential

process.

The paper of Langmead et al.17 also provides a good analy

sis of these bottlenecks for FASTQ and gzipped FASTQ files.

Example. For example, it takes 104 minutes to compress

a 132GB FASTQ file into 24GB FASTQ.gz, whereupon we

loose the possibility of random access. Further, it takes 12

minutes to decompress and parse this file. In fact, it takes

9.5 minutes to simply decompress this file, without pars

ing, which, due to its sequential nature, can not be sped

up using multiple threads without substantial overhead.

This single-threaded decompression can be the main

bottleneck in modern data-processing algorithms, which

do benefit from multi-threading and parallelization, and

often make use of SIMD instructions. Our index solves this

by creating checkpoints every 32MB (by default), so that

multiple threads can work on decompression and parsing

in parallel without global locks. In our example, this

speeds up the decompression and parsing from 12 minutes

to just 37 seconds using 24 threads.

Challenges with gzip. With continued advancements in

sequencing, the amount of data being generated, and the

corresponding sizes of the FASTQ files being produced is

increasing. For example, Kerbiriou et al.18 show that gzip

achieves a good size reduction for FASTQ files while still

offering reasonably fast decompression. However, reading

data from a compressed archive is still a relatively slow

process, with gunzip, the decompressor component of

gzip, yielding data at about 50-250 MB/sec, which is one to

two orders of magnitude lower than the read throughput

of current SATA/NVMe solid-state drives, depending on

the technology.

The gzip application uses the DEFLATE algorithm19,20 to

compress and decompress binary data. DEFLATE consists

of two stages. In the first stage, the data is processed se

quentially and LZ7721 parsing is performed. This encodes

the data as a sequence of literals and (off,length) pairs.

(off,length) is the offset and length of the longest prefix

in preceding 32KB context that can be used to replace

data at this location. Once the LZ77 parsing is complete,

Huffman coding22 is performed to further encode the data

compactly. The Huffman code trees are reset every block

to give best results. DEFLATE decompression is the opposite

process — the compressed data is decoded by Huffman

decoding. This writes down the data in a 32KB circular

buffer, which is then used by LZ77 decoding to decompress

the data entirely. The sequential nature of the compression

and decompression strategy adopted by DEFLATE makes

random access, or even parallel decompression, using

compressed FASTQ files hard.

Block compression. Block compression in this format is

possible, whereupon files are first broken into chunks, and

then these chunks are compressed separately. In fact, this

approach was pioneered in the bioinformatics community

with the development and adoption of the BGZF format23.

This can allow parallel decompression of the compressed

file, but it raises additional issues. First, such an approach

can negatively affect the compression quality obtained

by the compression algorithm (though, depending on the

specific input and the quality of the compression chosen,

this is not always the case practically). Second, even if

blocks are compressed independently, there is no guaran

tee that they are “record aligned” (i.e. that chunks start

and end on FASTQ record boundaries, or that the blocks

in paired-end files are synchronized and each contain the

same number of records). Finally, this approach requires

the file to be compressed using this approach itself, which

is true of some but certainly not all existing compressed

FASTQ files. The solution we present here works equally

well with BGZF compressed FASTQ files as with standard

gzip compressed FASTQ files.

Semantic checkpoints. The compression and decom

pression algorithms used in gzip are inherently serial.

As such, existing FASTQ parsers can only begin reading

starting from the beginning of each compressed FASTQ file.

However, if we know the relevant context of the compres

sor (32KB of uncompressed data before the checkpoint

of interest), then we can then start decompressing only

from that point onward. This is the core idea behind our

method. We create certain “checkpoints” in the file that

are approximately evenly-spaced with respect to the un­

compressed text. For each checkpoint, we store the infor

mation necessary to begin decompression directly at this

checkpoint. Likewise, to give semantic meaning to these

checkpoints, we also store the rank of the first read record

that begins at or past this checkpoint, and the byte offset

where this read starts beyond the checkpoint. Using this

idea, we can have multiple threads read the compressed

FASTQ file, where each thread starts processing from a

checkpoint and reads some number of records. Moreover,

we can jump to arbitrary checkpoints within multiple files,

allowing us to perform a quick “synchronization” in the

Patro et al. | mim index | 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

context of e.g. paired-end reads, whereby many threads

can subsequently process the reads independently after

this initial between-file synchronization.

The mim index. We have developed mim, a tool that creates

an index over gzip compressed FASTQ files, as well as mim-

parser, a corresponding (C++) FASTQ parsing library that

uses this index to be able to read the compressed FASTQ

file in parallel from multiple threads. The idea is to incur

a one-time cost of building the index, which then signif

icantly accelerates parsing compressed FASTQ files in the

future. The mim index is per-file, and so index-creation can

be trivially parallelized across datasets. Further, although

not yet implemented in our library, it is easy to build

the mim index as a byproduct of reading an existing gzip

compressed FASTQ file. We envision that the mim index can

be shared alongside the FASTQ files in repositories like the

European Nucleotide Archive13, which amortizes the cost

of the index creation. Moreover, as the index is purely

“auxiliary”, it can be used in tools that take advantage

of it without any negative backward compatibility conse

quences for existing tools that are unaware of this index.

Finally, the index itself encodes a cryptographic (blake3)24

hash of the file on which it has been constructed, which

enables uniquely binding an index to a source FASTQ file

allowing, e.g., content-based systems transparently fetch

ing these indices from a remote source. When running a

simple task such as counting the number of occurrences

of each nucleotide in a fastq.gz file, the mim index enables

near-linear speedup with the number of used worker

threads.

2. Related Work
There are several tools and methods related to mim and

what is proposed here, but none of them achieve precisely

the same aim or strike the same balance. First, there

has been substantial effort put into parsers that are well-

engineered and efficient, and several that take advantage

of multiple threads when the input consists of multiple

samples/files. Second, there are several tools that have

been developed to enable parallel decompression of exist

ing (un-modified) gzipped files. These approaches require

no modification of the original file, nor do they require the

construction of an index over the file. Finally, there have

been proposals to replace (gzipped) FASTQ wholesale, with

formats better designed for efficient parsing and for more

modern architectures and algorithms.

Efficient (gzipped) FASTQ Parsers. Before being

processed, the gzipped FASTQ records must be decom

pressed and parsed, and considerable engineering opti

mization has been put into efficient libraries for this

purpose. For example, the popular, single-threaded kseq26

library can be used for this purpose, and it provides

a highly-efficient parser implementation, written in C,

that can work transparently over either a compressed or

uncompressed input. This library has been wrapped and

made available in other languages such as Python. A fresh

@SRR28439552.1 E100075258L1C001R00200000008/1
CAGGCGCAATGGGCAGATCGCACAAAAAGAGTCAAATTTCTGGAGGAGTGAATCA
+
???

@SRR28439552.2 E100075258L1C001R00200000015/1
GTCAGGTGAGCCGCAGATCGCACATAATGGTTTGGCTAAGGTTGCCTGGT
+
??
@SRR28439552.3 E100075258L1C001R00200000196/1
CTATTCAATCGCGCAGATCGCACATGGATGTGAGGGCGATCTGGCTGCGACATCTGTCACCCCATT
+
??

@SRR28439552.4 E100075258L1C001R00200000284/1
CCTTGCGCAGGCGCAGATCGCACATTGGGGGAAGGGAGCTTTCAC
+
???
@SRR28439552.5 E100075258L1C001R00200000320/1
TAATAAGGGCGGGCAGATCGCACACTGGGCCGTGACTGAGGGTCTTGGCTGGAAAGGA
+
??

…

…

…

Compressed offset: 0

Uncompressed offset: 0

Decoder state: <..>

Bytes to next record: 0

Next record rank: 0

Compressed offset: 13,346,913

Uncompressed offset: 32,321,156

Decoder state: <..>

Bytes to next record: 36

Next record rank: 216,156

Compressed offset: 25,924,312

Uncompressed offset: 64,183,554

Decoder state: <..>

Bytes to next record: 51

Next record rank: 433,154

…

mim

Figure 1: Overview of the structure of the mim index. Several checkpoints are shown, along with the important information they retain. The logo

for Gzip is taken from25.

Patro et al. | mim index | 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

implementation of kseq, written in modern C++ is available

in the kseq++27 library.

Since decompression is inherently sequential, most multi-

threaded libraries use a producer-consumer approach. For

example, FQFeeder28 uses one thread per input file (or

file pair FASTQ parsing) and uses kseq++27 for the under

lying parser; multiple input sets can be decompressed in

parallel, but the the degree of parallel decompression and

parsing possible is limited by the number of samples (files

or file pairs) being parsed. The producer threads decom

press and parse the records, and place batches of parsed

FASTQ records onto a concurrent queue. Consumer threads

then take these batches of parsed records and perform the

actual computation (e.g. alignment, quality assessment,

etc.). A similar strategy is followed by RabbitFX29, which

also has additional optimizations, as well as by Rust

libraries seq_io30 and paraseq31.

While these parsers focus on efficiency, they lack the abil

ity to decompress and parse input from individual gzipped

FASTQ files in a highly parallel manner. With these ap

proaches, the producer thread pool cannot meaningfully

have more threads than the number of files being parsed

(since each file is decompressed and parsed sequentially).

We see that this as the major scalability bottleneck for

pipelines relying on this approach, a bottleneck that our

tool solves.

Parallel gzip decompression algorithms. pugz32 is

a parallel algorithm that enables fast decompression of

gzipped files. It can achieve this by being able to decom

press from a random offset by creating the fully decom

pressed 32KB context using a two-pass heuristic approach.

The 32KB context can be constructed almost always at

low compression levels, while some approximations are

needed at higher levels. rapidgzip14 expands upon pugz

by improving the heuristic used for speculative decoding,

as well as by improving the parallelization and cache

efficiency of the underlying algorithm. Both pugz and

rapidgzip can substantially improve the decompression

speed of gzipped files, including gzipped FASTQ file. How

ever, this improvement in decompression speed comes at

a considerable cost of extra computation; as a non-trivial

amount of the speculative decoding ends up in wasted

work. The rapidgzip tool also exposes an “index” mode,

whereby an extra index aids in parallel decompression of

the file. While this approach is similar to our approach

(and to that of the block gzip format with an index), it

differs in that rapidgzip is a generic method, and therefore

lacks a semantically aware index like mim which both en

ables synchronized decompression between related files

(e.g. ends of paired-end reads) and allows lock-free and

wait-free parsing of the underlying content, since mim

checkpoints are, by construction, aligned to record bound

aries.

Modified gzip archives. mgzip and pgzip are Python

libraries built on Python’s zlib and gzip wrappers.

pgzip33, is a maintained fork of mgzip34, and compresses

uncompressed buffers by breaking them into blocks, and

compressing each block independently in parallel. The

metadata of all blocks is inserted into the FEXTRA field

within the gzip file. This allows for parallel decompression

by reading this metadata. While they maintain backward

compatibility with gzip (i.e. the gzip utility can decom

press the generated gzip file), they generate a different

gzip file due to independent block compression. Thus,

adopting such an approach requires re-compressing the

data in this specialized format. Likewise, as with the index

adopted by rapidgzip, the blocks of pgzip and mzip are

not aware of the semantics of the underlying file, and

therefore not necessarily aligned with records.

A related approach is that taken by the Blocked GNU Zip

Format (BGZF)35. In this format, small chunks of the origi

nal file (≤ 64KB) are compressed independently as blocks

with a fresh compressor state for each block. This allows

the blocks to be decompressed in parallel. The BGZF for

mat essentially represents a multi-archive gzip file where

the independently compressed blocks are concatenated

together (which constitutes a valid gzip file). The header

of each BGZF block also contains extra information about

the length of the compressed block. The BGZF format is also

designed to support an index, which is a simple list of off

set pairs specifying the position in the compressed stream

of the start of each block, as well as the uncompressed

position to which it corresponds, this makes it easy to jump

to and decompress individual blocks, as well as to perform

random access within the compressed file. While the BGZF

format (with default parameters) does make an effort to

be somewhat semantically aware of the underlying data

being encoded (i.e. the specification states that “bgzip will

attempt to ensure BGZF blocks end on a newline when

the input is a text file.”), it still lacks specific information

about the ranks of the underlying reads. Moreover, there

is no guarantee that a newline boundary corresponds to

the start or end of an entire read record (e.g. FASTQ records

typically span 4 lines, and (non-multi-line) FASTA records

span 2). This, therefore, makes it impossible to properly

align multiple BGZF-compressed files and to process them

in parallel in a synchronized fashion (as is necessary e.g.

with paired-end reads). Likewise, while the BGZF index is

very simple and also very small, it relies on this special

structure of BGZF, and so it is not applicable on general

gzip compressed FASTQ files, as is mim.

Patro et al. | mim index | 4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

Alternative storage formats. While the approaches

above all focus on either maintaining existing gzip

archives as-is, or generating special variants of gzip

archives that are more amenable to random access or

parallel decompression, researchers have also considered

what might be possible if the gzip and FASTQ formats

themselves could be replaced as a source of raw data

storage and transfer. For example, the Nucleotide Archival

Format (NAF)36, describes a format designed to be smaller

and simultaneously faster to decompress than gzipped

FASTQ files.

Recently, the Binseq37 family of formats (comprising BQ

and VBQ) was proposed. These formats specifically focus on

encoding high-throughput sequencing data in a manner

that can be processed in parallel (i.e. either by enforcing

fixed-size records in BQ format, or by adopting a record-

aligned block/chunk compressed structure in VBQ format).

These approaches enable, by design, massively parallel

decompression and parsing, and can achieve precisely

the types of speedups we hope to enable. Yet, for the

NAF format and the Binseq format family, as well as

for related alternative approaches, the main impediments

are twofold. First, these formats are not well-represented

in the massive existing repository of sequencing data,

and the conversion of all prior data into these more effi

cient formats would be a massive undertaking. Likewise,

tremendous care would have to be taken to ensure that

no important aspects of the existing data were lost in

the process, for example, due to unexpected errors during

conversion or potential bugs or corner cases in the encoder

for the new format. With the purely auxiliary mim index,

the original file is only ever read (not rewritten or modi

fied), and so even a failure to index runs no risk of losing

information from the original file. Second, even if this con

version was undertaken successfully, the vast majority of

existing bioinformatics tools do not support these formats

yet (and many never will), and so, to retain the utility of the

vast repository of existing data, one would likely still have

to repeatedly convert from these newer formats back into

FASTQ or gzipped FASTQ when processing with legacy tools.

This burden may be minimized if the conversion itself is

lightweight and fast, and if the downstream tool being tar

geted is capable of consuming input from a FIFO or named

pipe. On the other hand, the approach we propose main

tains full backward compatibility by default (the source

files are unchanged, and the mim index is purely auxiliary).

Thus, no large-scale conversion need be performed, the

existing repository of available data can be retained as it

currently exists, and no intermediate conversion is neces

sary to allow data to be ingested by existing tools. New

tools can choose to take advantage of the auxiliary index

we propose in an iterative fashion, and legacy tools can be

retrofitted, as desired, to do so.

3. Our Approach

3.1. The mim index

In this section we describe the design for mim, the index

structure we use to enable parallel parsing of gzipped

FASTQ files.

3.1.1. The zran index

The mim index builds upon the zran index. zran is an

example application that appears in the source tree of the

zlib38 library. zran demonstrates the use of certain zlib

API features to enable accessing a gzip-compressed file

from a random offset.

It accomplishes this by fully decompressing the file, and

building an index containing “access points” (which we

henceforth call checkpoints) at approximately equally-

spaced locations, as shown in Figure 2. Each checkpoint

includes the starting file offset, relevant metadata about

the current deflate block, and the necessary data to exactly

reproduce the state of the decoder at this checkpoint (i.e.

the decoder’s context). This index is then used to fetch

some number of bytes from an arbitrary, user-provided lo

cation in the original gzip file (starting at the most-recent

checkpoint prior to the desired location). This program

does not save or load the index from disk, but rather stores

it in memory for a one-time random fetch (zran is, after

all, an example and not a full application).

3.1.2. Augmenting zran for sequencing data

FASTQ and FASTA files contain records that are not of fixed

size, and so each record can span a variable number of

bytes. The mim index and mim-parser handle both FASTQ

and FASTA files, but here we will focus only on FASTQ for

ease of exposition.

Any application that reads gzipped FASTQ files efficiently

in parallel needs to be able to (1) distribute work over

multiple threads (2) move the parsing of records outside of

any critical section of the program and (3) ensure that the

work assigned to different workers can be decompressed

efficiently in parallel. To achieve these capabilities, the

mim index augments zran’s index to support record-aligned

access.

We achieve this by maintaining, for each zran checkpoint,

two additional pieces of metadata; (1) the byte offset of

the first record occurring at or after this checkpoint, i.e.

how far from the checkpoint, in the uncompressed stream,

one must read to encounter the start of the first complete

record in this chunk, and (2) the record rank correspond

ing to this record, i.e. starting from 0, how many records

Patro et al. | mim index | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Schematic example of the mim index. A 224MB FASTQ file (top, grey) supports random access, but its 80MB gzipped fastq.gz

representation (bottom left, dark red) does not. The mim index makes a checkpoint (black bars) after approximately every 32MB of plain text. For

each checkpoint, it stores the internal state of the gzip decompressor, which consists mostly of the last (up to) 32kB of sequence (vertical yellow

bars, not to scale), and some small metadata (not shown). The data for all checkpoints is concatenated with the metadata and gzipped to obtain

the mim index file (bottom right, bright red). To read the fastq.gz file in parallel, the mim index is first decompressed to obtain the checkpoint data.

Then, each thread is assigned a range of 32MB blocks and can decompresses and parse this range by initializing the decompressor with the

checkpoint data.

have we seen prior to this one in the uncompressed stream.

To compute this auxiliary information, we augmented the

kseq++27 parser to store, for each parsed record, the byte

offset from the start of the file until the record start posi

tion. This “semantic” mapping, that puts zran checkpoints

into correspondence with specific reads and stores check

point-local offset from the start of the next record, is built

directly after the original zran index is built, and is stored

alongside the standard zran index as a list of checkpoints.

Figure 1 shows an overview of the mim index.

We store, along with our index, a cryptographic hash of

the content of the compressed file. Specifically, we store the

blake324 hash of the compressed file content. We envision

this data is being useful for two reasons. First, we hope, in

the future, to be able to host mim indexes for a wide variety

of publicly available datasets online. Having a distinct

content-based key will make it easy for mim enabled parsers

to automatically and transparently download and use the

mim index for a file if it is available (and if the user wants

to permit this behavior). Second, this provides a failsafe

against accidentally using the wrong mim index with a gzip

file to which it does not correspond. While attempting to

parse a gzipped FASTQ file in parallel using a mismatched

mim index will anyway likely lead to a failure to parse, the

checksum adds an extra level of certainty.

Finally, the index can, upon creation, embed user-pro

vided metadata. This metadata is provided as a JSON39

object (serialized in the index header in CBOR40 format).

This allows the user to tag the index with useful descrip

tors, relevant provenance information, or other details that

should be linked to the associated file.

3.1.3. Aspects of the mim index

In order for the index to be useful, the compressed file

needs to have a sufficient number of checkpoints to sat

urate many parsing threads. Specifically, we want each

chunk not to be too large, as, when we need to synchronize

records between files (e.g. for the case of paired-end pars

ing), we may need, in the worst case, to decompress and

discard up to one chunk’s worth of data in each thread.

Of course, having more chunks and more checkpoints

makes the index itself larger on disk, though we mitigate

this somewhat by compressing the index itself on disk

when we store it. When building the mim index, the span

(average number of uncompressed bytes between stored

checkpoints), is a user-controllable parameter that deter

mines the number of checkpoints that will be stored. We

set a default span of 32MB, and that is the span size used

for all data presented in this manuscript.

Ultimately, we observe the size of the index to be very

small; ∼ 0.1% of the size of the compressed data file

itself in most cases, since each checkpoint is around

32KiB (∼ 32MB/1000, despite the change in base). In

cases where the input file is actually already a BGZF

file (i.e. was bgzip compressed), we find the index

to be even smaller (0.0003% of the size of the file

for pbmc_10k_v3_S1_L001_R2_001, or only about 96B per

checkpoint). This is because zran chooses its checkpoints

naturally to align with the bgzip chunks (each of which is

typically much smaller than the chunk size in our index).

Since each bgzip chunk requires no additional context to

decompress, our index collapses to store basically just the

auxiliary chunk to read offset and read rank information.

Index creation itself requires decompressing and parsing

the original input file, plus a small amount of bookkeep

Patro et al. | mim index | 6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

ing to construct the zran and auxiliary index itself. Thus,

the time to create the mim index is only about ∼ 20%

larger than the time required to simply parse the gzip-

compressed FASTQ file. We note here that we have not

made an attempt to optimize the mim index creation, and

it can, almost certainly, be done in a single pass over the

input file. Further, this index creation cost is is a one time

cost. Therefore, we believe that this is a reasonable trade-

off. Once created, the indices themselves are very small

(the largest we encountered in our testing was ∼ 25MB,

and load within a fraction of a second. Statistics concern

ing the index sizes and how they relate to the original files

are given in Table 1.

3.2. mim-parser

Next, we describe our design for the parallel parser that

reads gzipped FASTQ files taking advantage of the mim

index. One major benefit of the approach described above

is that obtaining disjoint and independent, record-aligned

chunks of the input file, requires almost no synchroniza

tion. In our parser, upon loading the initial index, the

parser evaluates the number of chunks in the input file

in light of the number of parallel worker threads that

have been registered. It then assigns contiguous intervals

of chunks to the worker threads such that the number

of chunks handled by each worker is as even as possible.

After this initial assignment of chunk intervals, no syn­

chronization is required between the worker threads. Each

consumer/worker thread retains a read-only reference to

the mim index, it jumps to the beginning of the chunk inter

val it was assigned, and determines the number of records

that it is requested to process. This value is obtained by

subtracting the rank of the first read it is assigned (i.e. the

read at the start of its first assigned chunk) from the rank

of the first read in the chunk after its assigned interval.

Then, each worker simply begins reading and parsing the

input file from its assigned location, and yielding records

until it has produced the requested number of records.

The records that are read are parsed using kseq++27 and

converted into a C++ structure that can be used by down

stream tasks. Specifically, we have made a wrapper for

kseq++‘s input stream type to allow it to read directly from

a particular offset in a gzip file where the decompressor

state has been properly primed by an index checkpoint.

This is possible because the kseq++ parser provides a

user-implementable input stream interface that need only

implement the ability to obtain a requested number of

bytes of uncompressed data from the input stream. Specif

ically, we open the gzip file, seek to the appropriate

compressed offset, and prime the decompressor with the

necessary dictionary state. Then, we determine, based on

the record-level information associated with this check

point, how many bytes we must discard before the first

read record occurs. We read and discard this number of

bytes, and subsequently the file can be read by this worker

thread, from the start of a record, directly as if it is reading

from a normal gzip compressed stream (our stream read

ing implementation automatically handles appropriately

skipping gzip headers in a BGZF file or in a multi-part gzip

archive).

The parsing of paired-end read files proceeds in a similar

manner but is slightly more sophisticated. Here, the chal

lenge is that the parsing of records between the two files

must be synchronized so that, e.g. the rank 𝑘 read from

file 1 is parsed and returned along with the rank 𝑘 read

from file 2. To achieve this, the indices for both files are

opened, and the intervals of chunks are assigned to the

worker threads, based on the chunks in read file 1, just as

described above. Now, each worker knows what range of

reads it will parse and produce from file 1. Let 𝑟 be the

rank of the first read that will be parser from file 1 by

worker 𝑤. Next, for this worker, a search is conducted over

the checkpoints in the index for file 2 to find the chunk

starting with the highest ranking read ≤ 𝑟. Let this chunk

in file 2 be called 𝑐, and let the rank of the first read in this

chunk be 𝑟′. The worker then opens the second gzip file

starting at chunk 𝑐, discards the bytes prior to the start of

read 𝑟′, and then parses and discards 𝑟 − 𝑟′ read records.

At this point, the worker is situated at the same rank read

in files 1 and 2, and it can simply process the records

from these files in sequence (and independent of all other

workers) until it has processed the prescribed number of

reads. This initial synchronization means that some small

number of records may be read and parsed more than once

(e.g. discarded by one worker to obtain synchronization,

while properly yielded by another as part of its assigned

work interval). Nonetheless, this constitutes only a small

amount of extra work once per thread (per file), and in

practice represents negligeable overhead. We note that it

would be possible to design a mim index directly for paired-

end reads that records the exact points and offsets in the

file pair for reads of matching ranks, eliminating this small

amount of extra work. However, we decided against such

an approach, as we find the current approach simpler.

For example, the process of index creation is independent

for each compressed file, and a file can be indexed (and

parsed) independently of the file with which it is paired.

Likewise, The approach we adopt can easily and naturally

be extended to file sets of arbitrary arity using their inde

pendently computed indices (e.g. to single-cell ATAC-seq

data which might require sets of 3 files that are parsed in

a synchronized manner).

Patro et al. | mim index | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

4. Evaluation
In this section, we discuss our experimental setup and the

results for benchmarking mim and mim-parser. All exper

iments were performed on a single server with two Intel

Xeon E5-2699 v4 2.20 GHz CPUs having 44 cores, 512 GB

of 2.40 GHz DDR4 RAM, and a number of 3.6 TB Toshiba

MG03ACA4 ATA HDDs. The system is running with

Ubuntu 20.04 GNU/Linux 5.4.0-172-generic. The running

times are measured with the GNU time command. To col

lect the running times, the initial single-threaded parsing

was performed first, and the command was issued twice

recording only the timing of the second run, to ensure a

warm cache. Subsequently, the times were recorded for the

same sample for the remaining thread counts.

4.1. Experimental setup

We seek to evaluate our approach with respect to two

critical criteria: (a) Evaluate how lightweight the mim index

is, and (b) determine how much speedup can be achieved

via this kind of parallelism.

For the first aspect, we evaluate the index creation times

and index sizes for a range of FASTQ files of different sizes

(and characteristics).

For the evaluation, we kept the span of checkpoints to

be constant (every 32, 000, 000 uncompressed bytes in the

underlying stream), which generated different index sizes

for different FASTQ files. Ideally, we may want to optimize

checkpoint placement for a given file size or file structure –

as for large files, this span between checkpoints generates

many more checkpoints than we need to obtain maximal

parallelism — but we leave this for future work. Nonethe

less, this sampling rate between checkpoints leads to

indices that are about 1
1000 -th the size of the original file,

with little variance observed over these datasets.

To evaluate the speedups we can achieve with mim-parser,

we run mim-parser on 11 different FASTQ files (including 2

files that constitute a paired-end dataset, which we process

both individually and as a synchronized pair), with details

given inTable 1. These data represent a collection of

different assay types (e.g. metagenomic sequencing, ChIP-

seq, RNA-seq), read lengths, data ages and file sizes, with

sizes ranging from ∼ 400MB (compressed) to ∼ 24GB

(compressed). We run the parser in each case varying the

number of threads from 2 through 24.

To keep the focus on the speed of parsing and not any

computation done with the parsed data, the downstream

task used for benchmarking is a simple task of counting

the number of occurrences of each nucleotide across all

of the records in each of the FASTQ files. We compare our

tool’s performance with a sequential reader using the same

underlying parsing library.

4.2. Results

4.2.1. Evaluating mim index

Table 1 shows the index size for FASTQ files of different

sizes. The index size is about 0.1% of the size of the

original (compressed) FASTQ file. Of course, this index size

can be controlled by changing the desired number of bytes

between checkpoints (for all experiments here, we use

32, 000, 000 bytes between checkpoints).

In Table 2, we also report index creation times. On average,

index creation takes ∼ 1.2 × as long as simply parsing the

file with a single thread. This is expected, as index creation

is (currently) a single-threaded process that has to stream

dataset (.fastq.gz) size (GB) # of checkpoints mim index size (MB) size reduction

SRR28048028 0.390 74 0.407 958×

SRR28028283_1 2.47 617 2.59 954×

SRR28028283_2 2.51 617 2.63 952×

SRR28439552_1 3.62 704 3.74 967×

ERR1190770_2 4.06 346 4.19 970×

SRR9331208_1 7.93 992 8.13 974×

SRR13060943_2 8.56 907 8.80 972×

ENCFF000FFF 8.84 869 9.10 971×

SRR26865528_2 18.4 3902 19.2 959×

SRR28896749_1 24.7 4428 25.5 965×

pbmc_10k_v3_S1_L001_R2_001* 16.7 2420 0.0473 353 154×

Table 1: The size of each dataset evaluated and the size of the corresponding mim index and the relative size of the mim index as a percentage

of the original file. The pbmc file, designated with a *, was block compressed using bgzip.

Patro et al. | mim index | 8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

parsing (s) construction (s)

threads
dataset

1 2 4 8 12 16 20 24

SRR28048028 11.9 5.87 3.11 1.79 1.33 0.990 0.800 0.790 13.2

SRR28028283_1 91.9 42.2 21.9 12.0 8.71 6.91 5.63 4.82 93.3

SRR28028283_2 92.6 42.1 22.0 12.1 8.71 6.88 5.61 4.95 95.1

SRR28028283 (pair) 188 85.9 44.8 24.8 17.9 14.4 11.7 9.82 -

SRR28439552_1 117 54.7 28.3 15.5 11.2 8.89 7.26 6.21 123

ERR1190770_2 78.9 38.5 19.8 11.0 7.74 6.18 5.15 4.33 105

SRR9331208_1 206 98.6 51.9 28.4 20.3 16.0 13.0 11.1 259

SRR13060943_2 195 94.6 49.0 26.9 19.1 15.2 12.5 10.5 232

ENCFF000FFF 194 92.3 48.1 26.1 18.8 14.9 12.2 10.3 250

SRR26865528_2 606 283 146 79.0 56.3 45.7 37.1 30.9 651

SRR28896749_1 727 338 176 96.3 68.4 54.7 44.6 36.8 899

pbmc_10k_v3_S1_L001_R2_001 459 217 112 61.5 43.7 34.9 28.3 24.1 543

Table 2: Time required to construct the mim index and to compute the nucleotide sums using the mim-parser with varying numbers of threads.

over the file twice; once, without any parsing to generate

the zran checkpoints, and again with parsing to generate

the semantic information for each checkpoint. Optimiza

tion of the index creation step is one concrete direction

for future work. However, we believe that the current

index creation speed is already acceptable, as it is a one-

time cost and will be amortized over many instances of

processing the resulting files. Further, since index creation

is completely independent per file (even for files that are

paired in sequencing), the process of index creation can be

trivially parallelized over separate files.

4.2.2. Evaluating mim-parser

Figure 3 shows the scaling results for mim-parser on the set

of FASTQ files listed in Table 1. We can see that mim-parser

scales near linearly with the number of worker threads for

Figure 3: Scaling results for mim-parser. The plot shows the speedup of processing with 𝑡 threads compared to 1 thread for each file while

varying 𝑡 from 2 to 24. The plotted value is simply the time to process that file taken by 1 thread divided by the time take with 𝑡 threads. The

black dashed line represents theoretically optimal scaling, where the speedup is simply 𝑡. Note that SRR2848028 is the smallest file, and, though

it has more than 24 checkpoints, the total execution time with 24 threads is only 0.79 seconds, so speedup is limited by other factors like index

reading, initial work assignment, etc.).

Patro et al. | mim index | 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

these files, at least up through about 8 threads, where we

likely start to hit the limits of the HDDs being used in these

experiments.

5. Future Work
One substantial potential area for future optimizations is

determining an optimal policy for the size of mim index (i.e.

how to place checkpoints). Since the mim index builds on

zran’s index construction algorithm, we currently create

checkpoints that are separated by approximately the span

requested by the user. However, once one has substantially

more checkpoints than parsing threads that will ever be

used (e.g. when one has at least a few hundred check

points), the creation of further checkpoints is likely of

diminishing utility (though it may provide some benefit

in speeding up the initial synchronization in paired-end

parsing). Thus, a policy that determines how to place

“enough” checkpoints, and where they should be placed,

has the potential to make the mim index even smaller.

We also store a mapping of record boundaries to their

respective byte offsets in the gzipped file. One potential

optimization that may be possible is to construct check

points exactly at record boundaries, so that these two data

structures can be represented as one, helping us further

reduce the size of the index.

Another area for potential improvement is a more efficient

construction of the mim index itself. While the current

construction takes only small memory and is linear in the

size of the file being indexed, the index should, in theory,

be possible to construct in a single pass. Moreover parts

of the construction (e.g. the computation of the blake3

hash) may even be possible to parallelize. We believe that

the index is efficient enough to begin constructing at

scale now for the vast catalog of existing data, but further

optimization of the construction algorithm will certainly

help reduce the time and financial resources required to

perform this indexing.

Independent of index construction, our current parsing

strategy breaks the compressed file into approximately

equal intervals of data, and has each worker thread process

its own interval independently. While this is very likely to

work well in the vast majority of cases, one might imagine

scenarios where equal quantities of input reads result in

an unequal distribution of work in a downstream task

(e.g. perhaps the user is performing alignment and some

region of a file is enriched for reads that align to repetitive

parts of the reference sequence). Alternative load balanc

ing strategies are possible. For example, instead of each

thread being assigned an approximately equal region of

the file such that all regions cover the entire input, each

thread could be assigned a disjoint region of the file such

that the sum of all regions (all of which still start at a

checkpoint) are much smaller than the total file length. In

this case, when a thread is done with its assigned region, it

can consult the parser for the next available region, etc. As

the regions are made smaller, the work is broken up in a

more fine-grained way, and the strategy naturally adapts to

ensure that worker threads are not starved. Such a strategy

requires marginally more coordination, but that is likely

to be negligeable.

Perhaps the most impactful line of immediate work will

be to begin computing and hosting mim indexes for pub

licly deposited sequencing data. While we can begin this

process on a small scale using resources available to us,

it would be ideal to run mim index creation in a massively

parallel manner in the cloud, akin to how, e.g. the Logan

project41 made use of AWS to perform unitig and contig as

sembly of the entire SRA42. Along with this computation

of the mim index over the existing catalog of sequencing

data, it will also be useful to provide a remote hosting

of these indices so that they can easily be obtained given

just the accession number of the corresponding read files.

Even better, given the content-based cryptographic hash

embedded in each mim index (i.e. the blake3 hash com

puted from the compressed representation of the data), we

would like to add to our parser library the optional ability

to transparently download and use a mim index for a FASTQ

file if one is available. The unique content addressability

of the index based on the file makes this possible.

Finally, the current mim-parser implementation is written

in C++17 and usable by any tool capable of adopting this

language. This is a reasonable choice for a first implemen

tation given the prevalence of C++ in the development of

tools for high-throughput genomics processing. However,

an increasing number of new high-performance genomics

tools are being written in Rust, and we would like to pro

vide a Rust implementation of a mim-parser (or to provide

the requisite functionality as a crate that can be used by

existing Rust FASTQ parsers). Likewise, we would also like

to develop and expose Python bindings for the Rust imple

mentation, to provide even broader support for using the

mim index.

6. Conclusion
This work addresses a substantial bottleneck faced by

many tools that need to process and parse raw sequence

genomics data. We present the mim index, a lightweight,

supplementary index that accompanies a gzipped FASTQ

file and enables truly parallel decompression and parsing

of the file by a large number of threads.

To demonstrate the utility of this index, we also provide

an implementation of mim-parser, a multi-threaded FASTQ

Patro et al. | mim index | 10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

parser that achieves a near-linear speedup compared to

serial parsing. By using the mim index, each of the workers

in mim-parser can parse disjoint ranges of records within

a compressed FASTQ file in parallel, and provide them for

downstream processing. Our results show that mim-parser

achieves strong scaling as we increase the number of

workers. Moreover, the structure of the mim index allows

the parallel decompression and parsing even of synchro

nized (e.g. paired-end) files, and this is also supported by

mim-parser.

A key benefit of the mim index is that it is purely additive /

auxiliary. That is, it does not require modifying or recom

pression of the source FASTQ files in any way. This means

that adoption can be performed incrementally, and that

pipelines can freely mix tools that support mim index en

hanced parsing with those that don’t. Further, the indexes

are small, easy to store and transfer, and have a strong

built-in mechanism for correctness validation. Despite its

relatively simple strategy, our proposed approach enables

much better utilization of available modern hardware in

the processing of raw sequencing data, and can lead to

substantial performance gains for existing tools and algo

rithms that are currently bottlenecked on I/O and parsing.

When a sufficient number of threads are available, this

includes some of the most ubiquitous and common pro

cessing, like read alignment17. In summary, we hope that

researchers find the mim index and mim-parser useful in

speeding up their workflows, cutting costs, making better

use of modern parallel hardware, and potentially making

prohibitive tasks more accessible.

Funding

This work was supported by the US National Institutes

of Health R01HG009937 and by grants 2022-311195 and

2024-342821 from the Chan Zuckerberg Initiative DAF,

an advised fund of the Chan Zuckerberg Initiative Foun

dation.

Acknowledgements

The authors wish to thank Noam Teyssier, and Bede

Constantinides for important conversations during the de

velopment of the mim index and mim-parser parsing strate

gies. The preliminary work that led to this project was

completed as a semester project for the class CMSC701 at

the University of Maryland, and Siddhant Bharti, Prajwal

Singhania, and Rakrish Dhakal wish to acknowledge the

Zaratan HPC cluster43 as an important resource in carry

ing out that work. Finally, Rob Patro wishes to thank

Robert Aboukhalil, Robert A. Petit III, and Wytamma

Wirth for motivating him, during an animated discussion

at the CZI Open Science meeting, to pick this project back

up after a prolonged hiatus and finish it.

Declaration

R.P. is a co-founder of Ocean Genomics Inc.

References
1. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics 27,

764–770 (2011).

2. Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and ma

nipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).

3. Pandey, P., Bender, M. A., Johnson, R. & Patro, R. Squeakr: an

exact and approximate k-mer counting system. Bioinformatics

34, 568–575 (2017).

4. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with

Bowtie 2. Nature Methods 9, 357–359 (2012).

5. Li, H. Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM. https://arxiv.org/abs/1303.3997 (2013)

doi:10.48550/ARXIV.1303.3997.

6. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioin­

formatics 29, 15–21 (2012).

7. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L.

Graph-based genome alignment and genotyping with HISAT2

and HISAT-genotype. Nature Biotechnology 37, 907–915 (2019).

8. Grabherr, M. G. et al. Full-length transcriptome assembly from

RNA-Seq data without a reference genome. Nature Biotechnol­

ogy 29, 644–652 (2011).

9. Bankevich, A. et al. SPAdes: A New Genome Assembly Algorithm

and Its Applications to Single-Cell Sequencing. Journal of Com­

putational Biology 19, 455–477 (2012).

10. Koren, S. et al. Canu: scalable and accurate long-read assembly

via adaptive k-mer weighting and repeat separation. Genome

Research 27, 722–736 (2017).

11. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C.

Salmon provides fast and bias-aware quantification of transcript

expression. Nature Methods 14, 417–419 (2017).

12. He, D. et al. Alevin-fry unlocks rapid, accurate and memory-frugal

quantification of single-cell RNA-seq data. Nature Methods 19,

316–322 (2022).

13. Yuan, D. et al. The European Nucleotide Archive in 2023. Nucleic

Acids Research 52, D92–d97 (2023).

14. Knespel, M. & Brunst, H. Rapidgzip: Parallel Decompression

and Seeking in Gzip Files Using Cache Prefetching. in Proceed­

ings of the 32nd International Symposium on High-Performance

Parallel and Distributed Computing 295–307 (Acm, 2023).

doi:10.1145/3588195.3592992.

15. Singh, N. P., Khan, J. & Patro, R. Alevin-fry-atac enables rapid

and memory frugal mapping of single-cell ATAC-seq data using

virtual colors for accurate genomic pseudoalignment. Bioinfor­

matics 41, i237–i245 (2025).

16. Zhang, H. et al. Fast alignment and preprocessing of chromatin

profiles with Chromap. Nature Communications 12, (2021).

17. Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling

read aligners to hundreds of threads on general-purpose proces

sors. Bioinformatics 35, 421–432 (2019).

18. Kerbiriou, M. & Chikhi, R. Parallel decompression of gzip-com

pressed files and random access to DNA sequences. in 2019

Patro et al. | mim index | 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://arxiv.org/abs/1303.3997
https://doi.org/10.48550/ARXIV.1303.3997
https://doi.org/10.1145/3588195.3592992
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

IEEE International Parallel and Distributed Processing Sympo­

sium Workshops (IPDPSW) 209–217 (2019).

19. W, K. P. String searcher, and compressor using same. (1991).

20. Deutsch, P. DEFLATE Compressed Data Format Specification

version 1.3. (1996). doi:10.17487/rfc1951.

21. Ziv, J. & Lempel, A. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory 23, 337–

343 (1977).

22. Huffman, D. A Method for the Construction of Minimum-Redun

dancy Codes. Proceedings of the IRE 40, 1098–1101 (1952).

23. Handsaker, B. & Li, H. bgzf. http://www.htslib.org/doc/bgzip.html.

24. BLAKE3 Team. blake3. https://github.com/BLAKE3-team/

BLAKE3 (2025).

25. Flaticon. Flaticon. https://www.flaticon.com/free-icon/flying-

fish/_%206255787?term=flying+fish\&page=1\&position=3\&ori

gin=search\&%20related_id=6255787 (2024).

26. Li, H. seqtk. https://github.com/lh3/seqtk (2013).

27. Ghaffaari, A. kseq++. https://github.com/cartoonist/kseqpp

(2025).

28. Patro, R. FQFeeder. https://github.com/rob-p/FQFeeder (2025).

29. Zhang, H. et al. RabbitFX: Efficient Framework for FASTA/Q

File Parsing on Modern Multi-Core Platforms. IEEE/ACM Trans­

actions on Computational Biology and Bioinformatics 20, 2341–

2348 (2023).

30. Schlegel, M. seq_io. https://github.com/markschl/seq_io (2025).

31. Teyssier, N. paraseq. https://github.com/noamteyssier/paraseq

(2025).

32. Kerbiriou, M. & Chikhi, R. Parallel decompression of gzip-com

pressed files and random access to DNA sequences. (2019)

doi:10.48550/ARXIV.1905.07224.

33. Huges, T. pgzip. https://github.com/pgzip/pgzip (2025).

34. Li, V. mgzip. https://github.com/vinlyx/mgzip (2025).

35. Li, H. et al. The Sequence Alignment/Map format and SAMtools.

Bioinformatics 25, 2078–2079 (2009).

36. Kryukov, K., Ueda, M. T., Nakagawa, S. & Imanishi, T. Nucleotide

Archival Format (NAF) enables efficient lossless reference-free

compression of DNA sequences. Bioinformatics 35, 3826–3828

(2019).

37. Teyssier, N. & Dobin, A. BINSEQ: A Family of High-Per

formance Binary Formats for Nucleotide Sequences. (2025)

doi:10.1101/2025.04.08.647863.

38. Gailly, J.-l. & Adler, M. zlib. https://www.zlib.net/ (2024).

39. Bray, T. The JavaScript Object Notation (JSON) Data Inter­

change Format. http://www.rfc-editor.org/rfc/rfc7159.txt (2014).

40. Bormann, C. & Hoffman, P. Concise Binary Object Representa­

tion (CBOR). (2020).

41. Chikhi, R. et al. Logan: Planetary-Scale Genome

Assembly Surveys Life’s Diversity. bioRxiv (2025)

doi:10.1101/2024.07.30.605881.

42. Katz, K. et al. The Sequence Read Archive: a decade more

of explosive growth. Nucleic Acids Research 50, D387–D390

(2021).

43. Umd. The Zaratan HPC Cluster. https://hpcc.umd.edu/hpcc/

zaratan.html/.

Patro et al. | mim index | 12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 27, 2025. ; https://doi.org/10.1101/2025.11.24.690271doi: bioRxiv preprint

https://doi.org/10.17487/rfc1951
http://www.htslib.org/doc/bgzip.html
https://github.com/BLAKE3-team/BLAKE3
https://github.com/BLAKE3-team/BLAKE3
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://www.flaticon.com/free-icon/flying-fish/_%206255787?term=flying+fish\&page=1\&position=3\&origin=search\&%20related_id=6255787
https://github.com/lh3/seqtk
https://github.com/cartoonist/kseqpp
https://github.com/rob-p/FQFeeder
https://github.com/markschl/seq_io
https://github.com/noamteyssier/paraseq
https://doi.org/10.48550/ARXIV.1905.07224
https://github.com/pgzip/pgzip
https://github.com/vinlyx/mgzip
https://doi.org/10.1101/2025.04.08.647863
https://www.zlib.net/
http://www.rfc-editor.org/rfc/rfc7159.txt
https://doi.org/10.1101/2024.07.30.605881
https://hpcc.umd.edu/hpcc/zaratan.html/
https://hpcc.umd.edu/hpcc/zaratan.html/
https://doi.org/10.1101/2025.11.24.690271
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.0.0.1. The bottleneck of parallel decompression and parsing
	1.0.0.2. Example
	1.0.0.3. Challenges with gzip
	1.0.0.4. Block compression
	1.0.0.5. Semantic checkpoints
	1.0.0.6. The mim index

	2. Related Work
	2.0.0.1. Efficient (gzipped) FASTQ Parsers
	2.0.0.2. Parallel gzip decompression algorithms
	2.0.0.3. Modified gzip archives
	2.0.0.4. Alternative storage formats

	3. Our Approach
	3.1. The mim index
	3.1.1. The zran index
	3.1.2. Augmenting zran for sequencing data
	3.1.3. Aspects of the mim index

	3.2. mim-parser

	4. Evaluation
	4.1. Experimental setup
	4.2. Results
	4.2.1. Evaluating mim index
	4.2.2. Evaluating mim-parser

	5. Future Work
	6. Conclusion
	Funding
	Acknowledgements
	Declaration

	References

