
The open-closed mod-minimizer algorithm

Ragnar Groot Koerkamp1, Daniel Liu2, Giulio Ermanno Pibiri3,4

1ETH Zurich, Zurich, Switzerland.
2University of California, Los Angeles, California, USA.

3Ca’ Foscari University of Venice, Venice, Italy.
4ISTI-CNR, Pisa, Italy.

Abstract

Sampling algorithms that deterministically select a subset of k-mers are an impor-
tant building block in bioinformatics applications. For example, they are used
to index large textual collections, like DNA, and to compare sequences quickly.
In such applications, a sampling algorithm is required to select one k-mer out
of every window of w consecutive k-mers. The folklore and most used scheme is
the random minimizer that selects the smallest k-mer in the window according
to some random order. This scheme is remarkably simple and versatile, and has
a density (expected fraction of selected k-mers) of 2/(w + 1). In practice, lower
density leads to faster methods and smaller indexes, and it turns out that the
random minimizer is not the best one can do. Indeed, some schemes are known
to approach optimal density 1/w when k → ∞, like the recently introduced
mod-minimizer (Groot Koerkamp and Pibiri, WABI 2024).
In this work, we study methods that achieve low density when k ≤ w. In this
small-k regime, a practical method with provably better density than the random
minimizer is the miniception (Zheng et al., Bioinformatics 2021). This method
can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ
2021) in the window according to some random order. We show that extending
the miniception to prefer sampling open syncmers yields much better density.
This new method – the open-closed minimizer – offers improved density for small
k ≤ w while being as fast to compute as the random minimizer. Compared to
methods based on decycling sets, that achieve very low density in the small-k
regime, our method has comparable density while being computationally simpler
and intuitive.
Furthermore, we extend the mod-minimizer to improve density of any scheme
that works well for small k to also work well when k > w is large. We hence
obtain the open-closed mod-minimizer, a practical method that improves over
the mod-minimizer for all k.

Keywords: Minimizers; Randomized algorithms; Sketching; Hashing

1

1 Introduction

Efficient indexing of large textual collections is critical in bioinformatics, and k-mer
sampling methods play a pivotal role in this [1, 2] as they permit to design sparse, i.e.
space-efficient, data structures [3–7]. A popular sampling method is the minimizer,
simultaneously introduced by Roberts et al. [8] and Schleimer et al. [9]. A minimizer
scheme is defined by a triple (k,w,O) and operates as follows: from a window of w
consecutive k-mers of the string to be sampled, the (leftmost) smallest k-mer according
to the order O is elected as the “minimizer” of the window. Since the scheme tends to
sample the same k-mer from consecutive windows, the set of distinct sampled k-mers
is a sparse subset of all k-mers in the string. Several different sampling algorithms
have been proposed in the literature [8–13].

Recently, Groot Koerkamp and Pibiri introduced the mod-minimizer [12]. The core
idea behind the mod-minimizer is as follows. The position x of the smallest t-mer in
the window is determined and the k-mer at position x mod w is then sampled, where
t is some small integer parameter (≤ k).

This approach is intuitive for several reasons. First, the smallest t-mer within the
window acts as an “anchor” across potentially many more consecutive windows than
the smallest k-mer does (hence improving over the random minimizer). If this smallest
t-mer does not change across these windows, the algorithm exhibits a predictable
behavior: either the same k-mer is sampled from consecutive windows, or they are
spaced apart by exactly w positions. This is locally optimal, and indeed it has been
mathematically proven that as k → ∞ and w is fixed, the density of the method, that
is, the ratio between the expected number of sampled k-mers and the total number
of k-mers in the string, approaches 1/w. This effect can be graphically visualized in
Figure 1a, that shows an example for (w, k) = (4, 31) and t = 4. Furthermore, Kille
et al. [14] showed that the mod-minimizer has optimal density when k ≡ 1 (mod w)
and the string’s alphabet is large.

We remark that, regardless of the choice of t, k needs to be large compared to w
for the mod-minimizer to achieve good density. To intuitively see why, let us consider
the example in Figure 1b. Let ℓ := w + k − 1 so that an ℓ-mer covers w consecutive
k-mers. The example in Figure 1b uses the same value of ℓ and the same value of t as
Figure 1a, hence both figures show a region of an hypothetical string where the smallest
t-mer is maximally conserved (i.e., for a group of ℓ− t+ 1 consecutive windows) and,
as argued above, the behavior of the mod-minimizer is optimal in such region. The
two pictures differ only in the choice of the parameters w and k: a much smaller k is
used in Figure 1b, namely (w, k) = (27, 8). The number of regions of the string where
the smallest t-mer is maximally conserved, say M , only depends on ℓ and t. Thus, we
have M⌊ ℓ−t+1

w ⌋ groups of w consecutive windows that are optimally sampled and this
quantity decreases as w increases, like in Figure 1b. This intuitively shows that we
cannot use the mod-minimizer with a small value of k but we need a different method.

Contributions. This work introduces the open-closed mod-minimizer – a sampling
algorithm that has lower density than the best known schemes for k > w, like the
mod-minimizer, and also generally works for any value of k (Figures 3 and 5). This
new scheme is achieved by combining two main ingredients:

2

(a) (w, k) = (4, 31) (b) (w, k) = (27, 8)

Fig. 1: An illustration of the behavior of the mod-minimizer for w + k − 1 = 34, and
t = 4. Rows indicate consecutive windows. The thick outlined boxes mark the minimal
t-mer in each window and the regions highlighted in red indicate the sampled k-mer.

1. The open-closed minimizer. Among the methods that improve the random
minimizer for k ≤ w, theminiception by Zheng et al. [10] stands out for its elegance:
it samples the smallest closed syncmer according to some random order. (A closed
syncmer is a k-mer whose smallest substring of length s ≤ k appears either at the
beginning or at the end [15].) We extend the miniception to also consider open
syncmers – k-mers whose smallest contained s-mer is in the middle position [15, 16].
Specifically, the smallest open syncmer in the window is preferred, with respect to a
random order on k-mers. If there are none, the smallest closed syncmer is preferred.
Lastly, if no closed syncmer is present either, the smallest k-mer is considered. We
show that this method – that we name the open-closed minimizer – significantly
improves the density of the miniception to be comparable with the double decycling
method of Pellow et al. [11], making it a practical and useful method when k ≤ w.

As an example application, we used the open-closed minimizer as a replacement
of the random minimizer in SSHash [3, 4], a recent k-mer dictionary based on
minimizers. For default parameters (w, k) = (11, 21), the open-closed minimizer
consistently yields SSHash indexes that are 14% smaller across several datasets.

2. The extended mod-minimizer. We then generalize the mod-minimizer [12] to
accommodate any anchoring mechanism, not just the random minimizer on t-mers.
In this way, the mod-minimizer can be seen as a general method to improve the
density of any scheme for k > w. In particular, instead of using the smallest t-mer,
one could use the open-closed minimizer of length t as introduced above, hence
obtaining the so-called open-closed mod-minimizer. Furthermore, the new schemes
obtained by this extended mod-minimizer framework retain the benefit of being
computationally efficient, making them practical for large-scale applications.

Again, for parameters (w, k) = (11, 21), the open-closed mod-minimizer makes
SSHash 18% smaller when indexing the whole human genome (GRCh38), reducing
space usage from 8.70 bits/k-mer to 7.13 bits/k-mer.

One drawback is that a formal analysis of the density of the extended mod-
minimizer tends to be more difficult than for the mod-minimizer based on random
minimizers.

3

Table 1: Notation used in this article.

[n] := {0, . . . , n− 1} The first n integers starting from 0.
Σ := [σ] The alphabet of size σ := |Σ|.
S ∈ Σ∗ A long string of i.i.d. random characters drawn from Σ.

k Number of characters in a k-mer X of S.
w Number of k-mers in a window W of S.

ℓ = w + k − 1 = |W | Number of characters in a window W .
ℓ+ 1 = w + k Number of characters in a context,

consisting of two consecutive windows.
f : Σℓ → [w] A sampling function.

t ≤ k Length of an anchor for the extended mod-minimizer.
A : Σℓ → [ℓ− t+ 1] A sampling function to use as anchor for the extended mod-minimizer.

r ≤ s ≤ t Parameter s used to define syncmers;
it must be at least some integer lower bound r.

Software. Both C++ and Rust implementations of the proposed algorithms are
publicly available on GitHub at

• https://github.com/jermp/minimizers, and
• https://github.com/RagnarGrootKoerkamp/minimizers, respectively.

Organization. The rest of the article is organized as follows. Section 2 fixes the
notation used throughout the article and gives preliminary definitions. In Section 3,
we study the case where k ≤ w and introduce an open-closed minimizer. In Section 4,
we extend the mod-minimizer to improve the density of the methods discussed in
Section 3 to k > w, culminating in the open-closed mod-minimizer. We conclude in
Section 5 where we also discuss some promising future work.

Experimental results are presented directly in Section 3 and Section 4 respectively,
instead of postponing them to the end of the paper. We believe this is a good way
to guide the reader through solutions of incremental sophistication. Thus, we report
here some details about our experimental setup.

For all experiments we use the C++ implementation of the algorithms, compiled
with gcc 11.1.0 under Ubuntu 18.04.6. Whenever we need to hash k-mers, we use
the 128-bit pseudorandom hash function CityHash [17]. We do not explicitly consider
the time required to compute the methods (i.e., to sample the k-mers from a string)
because all of them can be implemented efficiently, and thus have comparable runtime.

2 Preliminaries

Following Groot Koerkamp and Pibiri [12], we here fix some preliminary notions
and precisely define the problem under study. Table 1 summarizes the most common
notation that we will use throughout the paper.

Basic notation. Let [n] := {0, . . . , n− 1}, for any n ∈ N. We fix an alphabet Σ = [σ]
of size σ = 2O(1). Let S ∈ Σ∗ be a string. We refer to S[i..j) as its sub-string of length
j − i starting at index i and ending at index j (excluded). When j − i = k for some

4

https://github.com/jermp/minimizers
https://github.com/RagnarGrootKoerkamp/minimizers

k ≥ 1, we call S[i..j) a k-mer of S. In the following, let w > 0 be an integer, so that
any string of length ℓ = w+ k− 1 defines a window W of w consecutive k-mers. Each
k-mer in W can be uniquely identified with an integer in [w], corresponding to its
starting position in W . A window is always implicitly assumed to be a substring of a
hypothetical long string S. We say that two windows W and W ′ are consecutive when
W [1..ℓ) = W ′[0..ℓ− 1).

We write a mod m for the remainder of a after division by m and a ≡ b (mod m)
to say that a and b have the same remainder modulo m.

Orders and hashes. An order Ok on k-mers is a function Ok : Σk → R, such that
x ≤Ok

y if and only if Ok(x) ≤ Ok(y). We do not necessarily require Ok to be random,
although practitioners often use a (pseudo-)random hash function h : Σk → [U] to
define the order, where [U] is a sufficiently large range, like U = 2128. We therefore
make the standard assumption [18, 19] that h is drawn from a family of fully random
hash functions that can be evaluated in O(1) on a machine word. Unless otherwise
specified, all the orders we consider in this work are random.

Since σ = 2O(1), it follows that any k-mer x ∈ Σk fits in O(k) words and h(x)
is computed in O(k) time. Furthermore, using a rolling hash function [20], we can
compute w hashes for the w consecutive k-mers in a window in O(w + k − 1) rather
than the naive O(wk). We implicitly assume this linear bound when discussing the
complexities of the algorithms.

Sampling functions and their densities. All methods we consider in this article
can be expressed as a function f : Σw+k−1 → [w] that, given a window W , samples the
k-mer starting at position f(W) in W . We call such function f a sampling function
and, sometimes, we colloquially refer to f as a “scheme”.

What is a “good” scheme? The performance metric we focus on in this work is the
density of a scheme, defined as follows. Given a string S of length n, letWi := S[i..i+ℓ)
for i ∈ [n − ℓ + 1]. A sampling function f selects the k-mers starting at positions
{i + f(Wi) | i ∈ [n − ℓ + 1]}. The particular density of f on S is |{i + f(Wi) | i ∈
[n−ℓ+1]}| / (n−k+1). The density of f is defined as the expected particular density
on a string S consisting of i.i.d. random characters of Σ in the limit where n → ∞.
We remark that, in practice, we use a finite but sufficiently-long random string S to
approximate the density of a scheme in this work.

Problem statement. With these initial remarks in mind, we can state precisely the
problem addressed in this article.

Problem 1 (Pure sampling function problem). Given integers w ≥ 2 and k ≥ 1,
implement a function f : Σw+k−1 → [w] in O(1) space with as low density as possible.

3 The small-k case: the open-closed minimizer

In this section, we study methods that perform well when k ≤ w. We refer to this
case as the “small-k” case. This scenario is particularly relevant to implement, e.g.,
sparse data structures for ℓ-mers [3–5] and building of De Bruijn graphs [21–23] just
to mention two example applications. In these applications, the high-level idea is to

5

Algorithm 1 Pseudocode for the random minimizer algorithm.

1: function rand-mini(W,w, k,Ok) ▷ Ok is random
2: omin = +∞
3: p = 0
4: for i = 0; i < w; i = i+ 1 do
5: o = Ok(W [i..i+ k))
6: if o < omin then
7: omin = o
8: p = i
9: return p

“cluster” similar ℓ-mers together to accelerate queries and improve compression. In
particular, this is done using minimizers, as follows. For each ℓ-mer, its minimizer is
computed, and all ℓ-mers having the same minimizer belong to the same cluster. In
these cases, k is typically fixed (e.g., k = 20) and w increases, so that usually k is less
than w.

3.1 The open-closed minimizer

The “classic” random minimizer is the simplest minimizer algorithm: it selects the
smallest k-mer of the window according to some random order Ok. (We remind the
reader that all orders used in this article are random.) If two or more k-mers have the
same smallest rank, then the leftmost k-mer is considered. Computing a minimizer
thus takes O(w+k−1) time and it has density 2/(w+1)+ o(1/w) (when k is not too
small1) [10]. Efforts spent in improving its density spurred many research results [10,
12, 13, 25–28] and it is the default choice in practical algorithm engineering [3–7, 21,
23]. For these reasons, we give the corresponding pseudocode in Algorithm 1.

Among the methods that perform better than a random minimizer, theminiception
by Zheng et al. [10] has provably lower density, even when k ∼ w. The miniception
can be elegantly described in terms of closed syncmers. Hence we first describe those.

Closed and open syncmers. The definitions of closed and open syncmers were first
given by Edgar [15]. For a given parameter 1 ≤ s ≤ k, a k-mer is a closed syncmer
if its smallest contained s-mer is either in first or last position, i.e., in position 0 or
k − s respectively. Note that this definition is context free, in that whether a k-mer is
a closed syncmer does not depend on surrounding characters. Closed syncmers satisfy
a window guarantee of k − s, meaning that there is at least one closed syncmer in
any window of w ≥ k − s consecutive k-mers. Closed syncmers have a density of
2/(k − s + 1) (assuming a random order on s-mers), which is the same as that of a
random minimizer when s = k − w for k > w. Indeed, syncmers were designed to
improve the conservation metric rather than density compared to minimizers (see the
original paper by Edgar [15] for details).

A variation on the closed syncmer is the open syncmer, where the smallest con-
tained s-mer is required to be at a specified offset v ∈ [k − s + 1]. Shaw and Yu [16]

1It was recently shown that the density is slightly below 2/(w+1) when k ≥ w and w is not too small [24].

6

Algorithm 2 Pseudocode for theminiception (left) and the open-closed (“OC”, right)
minimizer methods. The differences are highlighted in blue.

1: function miniception(W,w, k,Ok, s,Os)
2: w′ = k − s+ 1
3: omin = (2,+∞)
4: p = 0
5: for i = 0; i < w; i = i+ 1 do
6: X = W [i..i+ k)
7: h = Ok(X)
8: p′ = rand-mini(X,w′, s,Os)

9: if p′ = 0 or p′ = w′ − 1 then
10: o = (1, h) ▷ closed syncmer
11: else
12: o = (2, h)
13: if o < omin then
14: omin = o
15: p = i
16: return p

1: function oc-mini(W,w, k,Ok, s,Os)
2: w′ = k − s+ 1
3: omin = (2,+∞)
4: p = 0
5: for i = 0; i < w; i = i+ 1 do
6: X = W [i..i+ k)
7: h = Ok(X)
8: p′ = rand-mini(X,w′, s,Os)
9: if p′ = ⌊(w′ − 1)/2⌋ then

10: o = (0, h) ▷ open syncmer
11: else if p′ = 0 or p′ = w′ − 1 then
12: o = (1, h) ▷ closed syncmer
13: else
14: o = (2, h)
15: if o < omin then
16: omin = o
17: p = i
18: return p

showed that choosing v = ⌊(k−s)/2⌋ is best for conservation, so we assume this choice
too. Unlike closed syncmers, open syncmers have a distance guarantee: two consecutive
open syncmers are always at least ⌊(k − s)/2⌋+ 1 positions apart.

The miniception. With these definitions in mind, it is easy to describe the mini-
ception. The term miniception stands for “minimizer inception” and the method
samples the smallest closed syncmer from the window, according to a random order
Ok. Algorithm 2 (left) illustrates the method.

At a high level, the idea of this method (as well as other methods, e.g., the decycling
set based method by Pellow et al. [11]) is to first use a context-free scheme to sample
some fraction of k-mers. Then, in windows with none or multiple sampled k-mers,
a random order is used as a tiebreaker. It is clear that such schemes fall back to a
random minimizer when almost all or almost no k-mers are sampled. Thus, intuitively,
they perform best when the sampled fraction is on the order of 1/w.

Note that when w < k− s, a window may not contain any closed syncmer. In fact,
while positions {0, . . . , w− 1} and {k− s, . . . , k− s+w− 1} of the smallest s-mer in a
window induce closed syncmers respectively at positions {0, . . . , w− 1}, the k− s−w
positions in between these two sets, i.e., {w, . . . , k − s− 1}, do not induce any closed
syncmers. Note that a s-mer starting at any of such “middle” positions is a substring
of all k-mers in the window. Thus, if it is the smallest in the window, it is also the
smallest for all k-mers, preventing all k-mers to be closed syncmers. Assuming no
duplicate s-mers in a window and a random order Os, the probability that a window
contains no closed syncmers is therefore k−s−w

k−s+w for w < k − s. This is the probability
with which the miniception samples the smallest k-mer.

The open-closed minimizer. Inspired by the miniception, we here propose a natural
extension of the method to open syncmers. The method is illustrated in Algorithm 2

7

(right), with the differences to the miniception highlighted. Specifically, the open-
closed minimizer prefers sampling the smallest open syncmer (line 9-10). If no open
syncmer is found in the window, then the smallest closed syncmer is considered (line
11-12), like in miniception. Lastly, if no closed syncmer is found either, the smallest
k-mer is sampled. We call this new method of sampling syncmers the “open-closed
minimizer”.

The rationale behind this method is that open syncmers have a distance lower
bound, i.e., we know that two consecutive open syncmers must be at least ⌊(k−s)/2⌋+1
positions apart. This is in contrast to closed syncmers that do not have a similar
guarantee (but instead have an upper bound on the distance between them). As it
turns out, the distance lower bound of open syncmers should be preferred over closed
syncmers.

As already discussed for the miniception, the smallest s-mer positions {0, . . . , w−1}
and {k − s, . . . , k − s+w− 1} induce closed syncmers. Further, the positions i in the
middle, i.e., i ∈ {w, . . . , k−s−1}, induce an open syncmer when 0 ≤ i−⌊(k−s)/2⌋ < w.
From this, we can infer that it is possible that no open nor closed syncmer is present
in a window when w < (k − s)/2 or equivalently, k > 2w + s.

3.2 Analysis

To obtain the exact density of the open-closed minimizer, like for any other forward
scheme, one could compute the number of sampled k-mers on a De Bruijn sequence
of order w + k (a cyclic string where each possible sub-string of length w + k occurs
once) [29]. However, this takes exponential time as the sequence has length σw+k, and
thus quickly becomes infeasible. Here, we present a polynomial method to compute
the density.

Instead, it is possible to consider a context of w + k characters, containing two
consecutive windows. The density then equals the probability that the two windows
sample a different k-mer. For minimizer schemes specifically, this corresponds to the
probability that either the first k-mer (that in position 0) or the last k-mer in the
context (that in position w) is sampled [9, 10]. For convenience, we will call these two
k-mers at the edges charged k-mers.

Let us consider some simple examples before presenting the case of the open-closed
minimizer. We assume that all k-mers and s-mers in a window are distinct.

Example 1: the random minimizer. For the random minimizer, there are always
w + 1 k-mers in the context of length w + k among which to pick the smallest one,
hence the probability that the context is charged is 2/(w + 1), assuming all k-mers
are distinct.

Example 2: the miniception. Now, generalizing it to the miniception, first we have
to count the number of closed syncmers in a context. Call this quantity C. Naturally
we have 0 ≤ C ≤ w + 1. Note that when C = 0, i.e., there are no closed syncmers in
the context, then miniception “falls back” to random minimizers and thus the context
is charged with probability 2/(w + 1). Assume now that C > 0. Among those C k-
mers that are closed syncmers, let Cc be the number of charged ones, i.e., those at

8

Charged

Context

Hashed
s-mers

k-mers
Closed

Closed
Open

Closed & charged

Fig. 2: Example of finding all open (blue) and closed (red) syncmers in a context of
size w+k, for s = 3, k = 7, and w = 6. One of the closed syncmers is charged because
it is the rightmost k-mer.

position 0 or w in the context. Clearly, 0 ≤ Cc ≤ min(2, C). The probability that the
context is charged is then Cc/C. Of course, not all configurations (C,Cc) are equally
probable. For example, it is far more likely to have 2 closed syncmers in a context
rather than w + 1. Therefore, we would like to compute the probability distribution
of the count configurations (C,Cc), i.e., P{a context has configuration (C,Cc)} for all
(C,Cc). The density of miniception is then

2/(w + 1) ·P{context has configuration (0, 0)}+∑
(C>0,Cc)

Cc/C ·P{context has configuration (C,Cc)}.

Table 3 in Appendix A shows the distribution of the configurations (C,Cc) for w = 5,
k = 11, and s = 6, under the assumption that there are no duplicate s-mers in a
context. In this case, the computed density is 0.2929, which exactly matches what is
measured in practice over a long random string.

The open-closed minimizer. Now, to extend the analysis to the open-closed min-
imizer, we have to also take into account the number of open syncmers, say O, and
the number of those that are charged in a context, say Oc. In other words, we have to
compute the probability distribution of the count configurations (O,C,Oc, Cc). Note
that as soon as there is at least one open syncmer (O > 0), then the counts (C,Cc)
are irrelevant for computing the density. Table 4 in Appendix A shows the distribu-
tion of the configurations (O,C,Oc, Cc) for w = 5, k = 11, and s = 6, where we omit
for conciseness the configurations whose probability is 0. In this case, the computed
density is 0.2864.

Computing the probability distribution: brute force.We now address the prob-
lem of computing the probability distribution of the configurations (O,C,Oc, Cc). One

9

straightforward way to do so is to consider each possible permutation of (the hashes
of) the s-mers in a context and derive the corresponding configuration (O,C,Oc, Cc).

Let us consider an example. Assume w = 6, k = 7, and s = 3, so that there are
w+ k− s+ 1 = 11 distinct s-mers in a context. To infer an order between the s-mers
we can think of each of them as having a distinct hash. For example, assume that the
hashes are [1, 0, 10, 4, 2, 8, 9, 6, 5, 7, 3], as in Figure 2. This order induces three closed
syncmers, at (zero-based) positions 1, 4, and 6. Specifically, we have a closed syncmer
at position 1 because among the k − s + 1 = 5 s-mers within the k-mer at position
2 in the context, i.e., with hashes [0, 10, 4, 2, 8], the smallest s-mer (underlined) is in
the first position. Among those 3 closed syncmers, the one at position 6 is charged.
There is a single (uncharged) open syncmer at position 2, since it contains s-mers with
hashes [10, 4, 2, 8, 9], the smallest of which is in the middle, at offset ⌊(k − s)/2⌋ = 2.
Summing up, the configuration of the context is (O,C,Oc, Cc) = (1, 3, 0, 1).

By enumerating and analyzing all possible orders of s-mers in this way, we keep
track of how many orders have configuration (O,C,Oc, Cc), say N , and compute
P{context has configuration (O,C,Oc, Cc)} as N/(w + k − s+ 1)!. As the number of
orders to consider is (w+k−s+1)!, this approach is feasible for only very small values
of w and k.

Computing the probability distribution: recursion. We now introduce a
recursive method to compute the probability distribution of the configurations
(O,C,Oc, Cc) and, hence, the density of open-closed minimizers, that runs in time
polynomial in the number of s-mers in a context, w+ k− s+1. We assume that there
are no duplicate s-mers in a context. Pseudocode is shown in Algorithm 3.

The method first considers the position of the smallest s-mer. Since the order on
s-mers is random, this position i is uniform in {0, . . . , w+k− s}. Once the smallest s-
mer is known, we can determine for all k-mers containing the s-mer whether they are
a (charged) open or closed syncmer. Further, the smallest s-mer splits the remaining
k-mers into those on the left and right of it. These two groups are independent of each
other: the probability that a k-mer left of the s-mer is a syncmer is independent of
a k-mer right of the s-mer being a syncmer. This allows us to recurse on these two
halves independent from each other. We then add (the probability distributions of)
the counts of the left and right part, and take the average over all choices of i.

Now, consider the recursion in more detail. First, a range of less than k characters
can not contain any syncmers, and hence has probability 1 for counts (0, 0, 0, 0). Oth-
erwise, consider the position 0 ≤ i ≤ w+ k− s of the smallest s-mer. Then, one of the
following three events can happen:

1. When i is sufficiently far away from the boundaries, the k-mer containing the
minimal s-mer as its middle s-mer is fully contained in the range, and hence is an
open syncmer. When this k-mer is the first or last in the window, we additionally
count it as a charged open syncmer.

2. Otherwise, we consider closed syncmers. If we can extend the chosen s-mer left
and/or right by k−s characters, then those (up to two) k-mers are closed syncmers.
And as before, we also count how many of the two are charged.

10

Algorithm 3 Pseudocode to compute the density of the open-closed (mod-) minimizer
in polynomial time. For the open-closed minimizer, simply set t = k. To compute the
density of the closed minimizer (a.k.a., miniception) or open minimizer, ignore the if
statements at line 6 or 8.

1: function oc-mod-mini-density(w, k, t, s)
2: d = 0
3: for

(
(O,C,Oc, Cc) : p

)
∈ syncmer-count(w, t, s, 0, w + k) do

4: if O > 0 then ▷ If using open syncmers
5: d = d+ p · Oc

O
6: else if C > 0 then ▷ If using closed syncmers
7: d = d+ p · Cc

C
8: else
9: d = d+ p · 2+⌈(k−t)/w⌉

w+k−t+1
10: return d

11: function charged(w, i)
12: if (i mod w) = 0 then
13: return 1
14: else
15: return 0

16: function syncmer-count(w, t, s, l, r)
17: if r − l < t then
18: return {(0, 0, 0, 0) : 1}
19: for i = l; i ≤ r − s; i = i+ 1 do
20: L = syncmer-count(w, t, s, l, i+ s− 1)
21: R = syncmer-count(w, t, s, i+ 1, r)
22: (O,C,Oc, Cc) = (0, 0, 0, 0)
23: if l ≤ i− ⌊(t− s)/2⌋ ≤ r − t then ▷ Open syncmer
24: O = O + 1
25: Oc = Oc + charged(w, i− ⌊(t− s)/2⌋)
26: if i ≤ r − t then ▷ Right-extended closed syncmer
27: C = C + 1
28: Cc = Cc + charged(w, i)
29: if l ≤ i+ s− t then ▷ Left-extended closed syncmer
30: C = C + 1
31: Cc = Cc + charged(w, i+ s− t)
32: Di = add-distributions(L,R, (O,C,Oc, Cc))
33: return average(Dl, . . . , Dr−1)

34: function add-distributions(L,R, (O,C,Oc, Cc))
35: D = {}
36: for

(
(Ol, Cl, Ol

c, C
l
c) : p

l
)
∈ L do

37: for
(
(Or, Cr, Or

c , C
r
c) : p

r
)
∈ R do

38: D[(Ol +Or +O,Cl + Cr + C,Ol
c +Or

c +Oc, C
l
c + Cr

c + Cc)] += pl · pr
39: return D

3. If the chosen s-mer does not induce an open or closed syncmer, we simply do not
increase the counts.

11

de
ns

ity

0.050

0.054

0.057

0.061

0.065

0.069

0.072

0.076

0.080

0.083

0.087

k
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

OC O C M D DD lower bound C-best-s O-best-s OC-best-s

Fig. 3: Density for w = 24 and varying k, measured on a random string of ten million
i.i.d. random characters for σ = 4. For the methods OC, O, and C, we use s = 4 for
the solid lines. The dashed lines, instead, use the best choice of s.

After counting the open/closed syncmers containing the s-mer at position i, we
use recursion to count the number of open/closed syncmers in W [0..i + s − 1) and
W [i+1..w+k), with the modification that for the recursive steps, the leftmost and/or
rightmost k-mer in the remaining interval may not be the leftmost/rightmost k-mer
in the full window, and hence not be charged.

In conclusion, the algorithm described here can be used to compute exactly the
density of the open-closed minimizer. However, we lack a closed-form formula for its
density or a tight approximation. We leave these two problems for the future.

3.3 Density

Figure 3 compares the density of the described schemes for w = 24 and by vary-
ing k, over a string of ten million i.i.d. random characters drawn from alphabet of
size σ = 4 (we choose this value of σ as it is used when sampling DNA sequences;
Figure 6a in Appendix B shows the same plot for σ = 256). The curve named “lower
bound” corresponds to the (simplified) lower bound proved by Kille et al. [14], which
is max(⌈(w + k)/w⌉/(w + k), ⌈(w + k′)/w⌉/(w + k′)) where k′ is the smallest integer
≥ k such that k′ ≡ 1 (mod w).

In the legend and remaining text, we use the following abbreviations:

• M: the random minimizer.
• C: closed syncmer minimizer, corresponding to the miniception;

12

Table 2: Space usage for SSHash indexes in bits/k-mer across different datasets and for
the minimizer types proposed in this article. The used parameters are (w, k) = (11, 21)
for all datasets. We show percentages relative to the random minimizer, which is the
default option to build SSHash indexes.

Minimizer Human Chr. 13 Whole human Salmonella-100 Axolotl

random 7.53 8.70 7.55 9.91

open-closed (Section 3.1) 6.45 7.44 6.69 8.54
(−14.35%) (−14.48%) (−11.39%) (−13.80%)

open-closed mod (Section 4.1) 6.18 7.13 6.46 8.22
(−17.90%) (−18.05%) (−14.42%) (−17.05%)

• O: open syncmer minimizer, where open syncmers are preferred over k-mers;
• OC: the open-closed minimizer from Section 3.1;
• D and DD: the decycling and double decycling set based methods introduced by
Pellow et al. [11].

For details on the decycling methods, we refer to the original paper and to Section 3
of [12] for a review of the method. These schemes map each k-mer to a complex number
and prefer those with argument between 0 and 2π/k, and in our implementation the
arithmetic involved tends to be slightly less efficient than the other discussed methods.
Nevertheless, double decycling often has the lowest density of all schemes as also
evident from Figure 3.

As apparent, the OC scheme performs remarkably better than the other two vari-
ants of miniception when k approaches w, and indeed has a similar shape to the
density of the decycling set based methods, D and DD. In fact, this similarity is even
closer when the alphabet is large and s = 1, Figure 6a. However, compared to D and
DD, OC is simpler, more intuitive, and even faster to compute as it does not involve
arithmetic with complex numbers. All the solid lines in the plot use s = 4. The dashed
lines are instead obtained by taking the best choice of s for each k. It is interesting
to note that, for very small k (say, in the range [5..10]) and the best choice of s, the
methods O and OC achieve better density than the decycling set based methods.

SSHash indexes. To give a concrete idea of how open-closed minimizers can be useful
in practice, we use them to build SSHash indexes [3, 4], across some different datasets.
(We remark that the SSHash data structure can use any sampling scheme that respects
a window guarantee. The default choice in SSHash is to use the classic random mini-
mizer.) We test the chromosome 13 of the human genome, the whole human genome
(GRCh38), a small pangenome of 100 Salmonella Enterica genomes [30], and the
whole genome of the the Ambystoma Mexicanum (the “axolotl”), which has one of
the largest genomes (more than 18 billion distinct k-mers for k = 31). Table 2 reports

13

Algorithm 4 Pseudocode for the mod-sampling and the extended mod-minimizer
methods. For the extended mod-minimizer, A : Σw+k−1 → [w+k− t] is any sampling
scheme used to define the anchor. We assume that A defines an order between t-mers
and that its definition might use additional parameters to define the sampling, like
s ≤ t in case A is the open-closed minimizer from Section 3.1.

1: function mod-sampling(W,w, k, t,Ot)
2: x = 0
3: omin = +∞
4: for i = 0; i < w + k − t; i = i+ 1 do
5: o = Ot(W [i..i+ t))
6: if o < omin then
7: omin = o
8: x = i
9: p = x mod w

10: return p

1: function extd-mod-mini(W,w, k, r, A)
2: t = r + ((k − r) mod w)
3: x = A(W,w + k − t, t)
4: p = x mod w
5: return p

space usage of SSHash in bits/k-mer on these datasets, for (w, k) = (11, 21): the open-
closed minimizer makes SSHash consistently smaller, improving its space usage by at
least 11% and up to 14.5%.

Behaviour for large k. Lastly in this section, we observe that all methods discussed
so far cease to work well when k grows (with s fixed) and their density worsens towards
that of a random minimizer. The reason is that as k grows, fewer and fewer k-mers are
an open/closed syncmer. Thus, more and more windows of w k-mers will not contain
a single “special” k-mer, and thus fall back to the random minimizer. A larger value
of s can be used to prevent this, but will still not allow density to improve beyond a
constant as k → ∞.

For example, the C method (miniception2) has a sharp increase in the density
when k−s > w, which is exactly when a window is not guaranteed to contain a closed
syncmer anymore. A similar effect is observed for the OC method, where for k−s > 2w
no open nor closed syncmer might be found in a window. For the O method, instead,
the probability that a window contains no open syncmer already starts to increase
already before k reaches w.

The decycling set based methods (D, DD), instead, do not perform well for large
k as the universal hitting sets contain roughly 1/k of k-mers and hence become too
sparse to ensure most windows contain a k-mer in these sets.

To compensate for this drop in effectiveness, we need another method which is the
subject of the next section.

4 The large-k case: the extended mod-minimizer

In this section we consider methods tailored for the case where k is larger than w,
which we refer to as the “large-k” case.

2Zheng et al. [10] proved that the density achieved by miniception can be upper bounded by 1.67/w +
o(1/w), when k ≥ w and s = k − w + 1. But even then, the density is only dependent on w and therefore
cannot improve when k grows.

14

Recently, Groot Koerkamp and Pibiri [12] introduced the mod-sampling method
– a framework to obtain minimizer schemes that have low density when k > w. The
method is illustrated in Algorithm 4 (left). It simply determines the position x of the
smallest t-mer in the window for some t ≤ k. It then samples the k-mer at position
x mod w. The complexity of the method is clearly O(w + k − 1).

As we argued in Section 1, the method works intuitively well because the smallest
t-mer acts as an “anchor” for potentially many more than w consecutive, making the
mod-sampling exhibit a locally optimal behavior when the smallest t-mer does not
change: either it samples the same k-mer from consecutive windows or it samples the
k-mer that it w positions apart from the last sampled k-mer. This effect is depicted
in Figure 1a.

In this section we extend this method to work with any anchoring mechanism, and
not just the smallest t-mer found by a random minimizer.

4.1 The extended mod-minimizer

We first fix the choice of the parameter t for mod-sampling as t = r+((k−r) mod w),
for some lower bound r ≤ t. (We use r = 4 in our experiments.) Groot Koerkamp
and Pibiri [12] showed that this choice of t minimizes the density of mod-sampling
and it gives a minimizer scheme named the mod-minimizer. Furthermore, when r >
(3 + ε) logσ(w + k − 1) for some ε > 0 and the order Ot is random, the density of
the mod-minimizer tends to the optimal 1/w as k → ∞. Kille et al. [14] also showed
that, for large alphabets, the mod-minimizer has near-optimal density when k ≡ 1
(mod w), and not just when k is large.

Let us call anchor of length t the t-mer that is selected by the mod-minimizer to
determine the position of the sampled k-mer. Here we note that the mod-minimizer
can be further extended to consider any arbitrary sampling function A : Σw+k−1 →
[w + k − t] to determine the anchor, where A can be a minimizer, a more general
forward scheme, or even a local scheme. This extended mod-minimizer algorithm is
shown in Algorithm 4 (right). In fact, while the anchor can simply be determined by
taking the random minimizer of length t as done in [12], this is just one among many
possible choices. For example, we showed in Section 3 that closed and open syncmers
improve over random minimizers for small k. Thus, it makes sense to use the open-
closed minimizer of length t as anchor in the extended mod-minimizer. We call this
new scheme the open-closed mod-minimizer. An example is shown in Figure 4.

This scheme converges to optimal density 1/w for k → ∞ (see Section 4.2) like
the mod-minimizer that uses a random minimizer as anchor but, as we will see in
Section 4.3, it achieves even lower density for many practical values of k.

4.2 Analysis

As explained, the extended mod-minimizer generally works with any anchor A :
Σw+k−1 → [w + k − t] that samples a t-mer from a window. The following theorem
shows how the density of the extended mod-minimizer relates to the density of A when
A is a minimizer scheme.

15

Window

Sample k-mer at position
t-mer anchor: minimal open syncmer
Open syncmer: minimal s-mer in middle

Fig. 4: Example of the open-closed mod-minimizer for s = 3, t = 7, k = 15, and
w = 8.

Theorem 1. Let A : Σw+k−1 → [w + k − t] be a minimizer scheme that selects the
smallest t-mer according to some order Ot. Then the density of the mod-minimizer
is given by the probability that A samples a t-mer in a position p ≡ 0 (mod w) in a
context of two consecutive windows, whose total length is w+k characters and contains
w + k − t+ 1 t-mers.

Proof. Consider two consecutive windows W and W ′ of length w+ k− 1 of a uniform
random string. Let x and x′ be the position of the smallest t-mer in W and W ′

respectively, and let p = x mod w and p′ = x′ mod w be the positions of the sampled
k-mers. Let y ∈ {x, x′ + 1} be the absolute position of the smallest t-mer in the two
windows.

Since A is a forward scheme, we can compute its density as the probability that
a difference k-mer is sampled from W and W ′. First note that the two consecutive
windows contain a total of w + k − t+ 1 t-mers, and thus, 0 ≤ y ≤ w + k − t, where
w + k − t is divisible by w since t ≡ k (mod w).

When y ̸≡ 0 (mod w), this implies 0 < y < w + k − t, and thus, the two windows
share their smallest t-mer. Thus, p = x mod w = y mod w and p′+1 = x′ mod w+1 =
(y − 1) mod w + 1. Since y ̸≡ 0 (mod w), this gives p′ + 1 = y mod w, and thus, the
two windows sample the same k-mer.

When y ≡ 0 (mod w), there are two cases. When y = x (and thus y < w+ k − t),
we have p = x mod w = y mod w = 0, and since the k-mer starting at position 0 is not
part of W ′, the second window must necessarily sample a new k-mer. Otherwise, we
must have y = (x′+1) ≡ 0 (mod w), which implies p′ = x′ mod w = (y−1) mod w =
w − 1, and since the k-mer starting at position w − 1 in W ′ is not part of W , again
the second window must necessarily sample a new k-mer.

To conclude, the two windows sample distinct k-mers if and only if the smallest
t-mer occurs in a position y ≡ 0 (mod w).

Using Theorem 1, we can obtain a closed-form formula for the density of the
extended mod-minimizer when A is a random minimizer, because we know that the
position of the smallest t-mer is uniformly distributed in [w + k − t+ 1].

Lemma 1 ([12], Lemma 9). For any ϵ > 0, if t > (3 + ϵ) logσ(w + k − 1), the
probability that a random window of w+ k− t t-mers contains two identical t-mers is
o(1/(w + k − 1)), which tends to 0 for k → ∞.

16

de
ns

ity

0.050

0.053

0.056

0.059

0.062

0.066

0.069

0.072

0.075

0.078

0.081

k
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

mod-OC mod-O mod-C mod-M mod-D mod-DD
lower bound mod-C-best-s mod-O-best-s mod-OC-best-s

Fig. 5: Density for w = 24 and by varying k, measured on a random string of ten
million i.i.d. random characters for σ = 4. We use r = 4 for all methods. For the
methods mod-OC, mod-O, and mod-C, we use s = 4 for the solid lines. The dashed
lines, instead, use the best choice of s.

Theorem 2. If t ≡ k (mod w) satisfies the condition in Lemma 1 and A is the
random minimizer, then the density of the extended mod-minimizer is

2 + k−t
w

w + k − t+ 1
+ o(1/(w + k − 1)). (1)

When w is fixed and k → ∞, the density tends to 1/w.

Proof. By Theorem 1, we must bound the probability that a position y ≡ 0 (mod w)
is sampled in a context of w+k− t+1 t-mers. When the smallest t-mer in the context
is unique, its position is uniformly distributed. Since there are 1 + (w + k − t)/w

positions y such that y ≡ 0 (mod w), the probability is 1+(w+k−t)/w
w+k−t+1 . Otherwise, we

can bound the probability that a non-unique smallest t-mer is in such a position by
o(1/(w + k − 1)) by Lemma 1. We directly obtain the result. It is immediate to see
that the density goes to 1/w when w is fixed and k → ∞.

For different anchors A, the position of the smallest t-mer may not be uniformly
distributed in {0, . . . , w + k − t}, and hence they may induce a different density for
the extended mod-minimizer.

17

Computing the density of the open-closed mod-minimizer. While we do not
have a closed-form formula for the probability that A samples a k-mer at position
p ≡ 0 (mod w) when A is an open-closed minimizer, we can extend the analysis made
in Section 3.2 for the open-closed minimizer to the open-closed mod-minimizer. By
Theorem 1, we must compute the probability that the sampled k-mer is in a position
p ≡ 0 (mod w). Thus, we change the definition of charged k-mer to not only be the
leftmost and rightmost k-mer, but to include any k-mer at a position p ≡ 0 (mod w).
Apart from accounting for these additional charged k-mers, the recursive algorithm
shown in Algorithm 3 stays the same.

4.3 Density

Figure 5 shows the density of the same methods compared in Figure 3, but when they
are used as anchors (of length t = r+(k− r) mod w, for r = 4) for the extended mod-
minimizer. Thus, we prefix their names by “mod”. The plot shows that the extended
mod-minimizer can be used as a method to “lift” any method from small to large k,
i.e., to improve its density when k > w. Indeed, all methods have better density than
the random mod-minimizer (method mod-M) and, among those, the open-closed mod-
minimizer (method mod-OC) should be preferred over mod-DD for reasons already
discussed. Figure 6b in Appendix B shows the equivalent plot of Figure 5 for σ = 256,
with similar results.

Considering again Table 2, the open-closed mod-minimizer consistently improves
over the open-closed minimizer from Section 3 by 3 − 4%, resulting in a decrease in
SSHash’s space of 18% on the whole human genome. We stress that this improvement
in space usage is obtained without modifying the SSHash data structure, but only by
changing the sampling algorithm.

5 Conclusions and future work

In this work, we introduced the open-closed minimizer, a method that achieves very low
density for the case when k ≤ w. Technically speaking, this is achieved by extending
the miniception method of Zheng et al. [10] to also sample open syncmers (and not
just closed syncmers). This is based on the intuition that open syncmers should be
preferred over closed syncmers as they satisfy a distance lower bound, i.e., that two
consecutive open syncmers tend to be well apart from each other. This new method
thus achieves density that is practically as low as the double decycling method by
Pellow et al. [11], but is simple, intuitive, and computationally efficient.

Then, we also extended the mod-minimizer by Groot Koerkamp and Pibiri [12],
that works by selecting the smallest t-mer inside the window and uses this “anchor” to
determine the position of the k-mer to sample. We extended this method to consider
any arbitrary sampling scheme to select the t-mer. This can yield better densities
than the original mod-minimizer, depending on the choice of the anchor. The extended
mod-minimizer can thus be used to improve the density of any method when k > w.
For example, by combining the open-closed minimizer with the mod-minimizer we
obtained the so-called open-closed mod-minimizer, which achieves even lower density

18

in practice than the random mod-minimizer for k where it is not already provably
optimal.

To show the direct impact of these results, we replaced the random minimizer used
in the SSHash data structure [3, 4] with the open-closed mod-minimizer. This simple
change decreases the space usage by up to 18%, e.g., on the whole human genome. As
future work, it would also be interesting to quantify the impact of our new schemes
on other applications such as read mapping. For example, our sampling schemes could
be used in the minimap2 software [31].

Future work. The analysis of the extended mod-minimizer is more complicated
than the version using random minimizers and, currently, we lack closed-form formu-
las for its density. Future work could therefore try to derive such formulas (or tight
approximations) for specific anchors, like the open-closed minimizer.

More generally, one could investigate how much closer to the ⌈w+k
w ⌉/(w+ k) lower

bound by Kille et al. [14] schemes can get. In particular, forward schemes having
density equal to the lower bound must never sample overlapping k-mers. Compared
to random minimizers, where k-mers can overlap by k− 1, open syncmers get halfway
there by being roughly k/2 positions apart. Preliminary results suggest that when k
is small (up to ≈ w/6) it is indeed possible to design a scheme where sampled k-mers
usually do not overlap, and hence to achieve density very close to the lower bound.
Thus, the schemes introduced in this paper should not be considered as a definitive
word on this important matter.

Author contributions. R.G.K.: Conceptualization, Methodology, Software, Vali-
dation, Writing – Review and Editing; D.L.: Conceptualization, Software; G.E.P.:
Conceptualization, Methodology, Software, Validation, Writing – Original Draft. All
authors read and approved the final manuscript.

Funding. R.G.K.: ETH Research Grant ETH-1721-1 to Gunnar Rätsch. G.E.P.:
Funding for this research has also been provided by the European Union’s Hori-
zon Europe research and innovation programme (EFRA project, Grant Agreement
Number 101093026). This work was also partially supported by DAIS – Ca’ Foscari
University of Venice within the IRIDE program.

Declarations. None to report.

References

[1] Ndiaye, M., Prieto-Baños, S., Fitzgerald, L.M., Yazdizadeh Kharrazi, A., Ore-
shkov, S., Dessimoz, C., Sedlazeck, F.J., Glover, N., Majidian, S.: When less is
more: sketching with minimizers in genomics. Genome Biology 25(1), 270 (2024)
https://doi.org/10.1186/s13059-024-03414-4

[2] Zheng, H., Marçais, G., Kingsford, C.: Creating and using minimizer sketches in
computational genomics. Journal of Computational Biology 30(12), 1251–1276
(2023) https://doi.org/10.1089/cmb.2023.0094

19

https://doi.org/10.1186/s13059-024-03414-4
https://doi.org/10.1089/cmb.2023.0094

[3] Pibiri, G.E.: Sparse and skew hashing of k-mers. Bioinformatics 38, 185–194
(2022) https://doi.org/10.1093/bioinformatics/btac245

[4] Pibiri, G.E.: On weighted k-mer dictionaries. Algorithms for Molecular Biology
18(1), 1–20 (2023) https://doi.org/10.1186/s13015-023-00226-2

[5] Marchet, C., Kerbiriou, M., Limasset, A.: BLight: Efficient exact associative
structure for k-mers. Bioinformatics 37(18), 2858–2865 (2021) https://doi.org/
10.1093/bioinformatics/btab217

[6] Fan, J., Khan, J., Singh, N.P., Pibiri, G.E., Patro, R.: Fulgor: A fast and compact
k-mer index for large-scale matching and color queries. Algorithms for Molecular
Biology 19(1), 1–21 (2024) https://doi.org/10.1186/s13015-024-00251-9

[7] Pibiri, G.E., Fan, J., Patro, R.: Meta-colored compacted de Bruijn graphs.
In: Research in Computational Molecular Biology - 28th Annual International
Conference, RECOMB 2024, Cambridge, MA, USA, April 29 - May 2, 2024,
Proceedings, pp. 131–146 (2024). https://doi.org/10.1007/978-1-0716-3989-4 9

[8] Roberts, M., Hayes, W.B., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing
storage requirements for biological sequence comparison. Bioinformatics 20(18),
3363–3369 (2004) https://doi.org/10.1093/bioinformatics/bth408

[9] Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: Halevy, A.Y., Ives, Z.G., Doan, A. (eds.) Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data, San
Diego, California, USA, June 9-12, 2003, pp. 76–85 (2003). https://doi.org/10.
1145/872757.872770

[10] Zheng, H., Kingsford, C., Marçais, G.: Improved design and analysis of prac-
tical minimizers. Bioinformatics 36, 119–127 (2020) https://doi.org/10.1093/
bioinformatics/btaa472

[11] Pellow, D., Pu, L., Ekim, B., Kotlar, L., Berger, B., Shamir, R., Orenstein, Y.:
Efficient minimizer orders for large values of k using minimum decycling sets.
Genome Research 33(7), 1154–1161 (2023) https://doi.org/10.1101/gr.277644.
123

[12] Groot Koerkamp, R., Pibiri, G.E.: The mod-minimizer: A Simple and Effi-
cient Sampling Algorithm for Long k-mers. In: 24th International Workshop
on Algorithms in Bioinformatics (WABI 2024), vol. 312, pp. 11–11123 (2024).
https://doi.org/10.4230/LIPIcs.WABI.2024.11

[13] Marçais, G., DeBlasio, D.F., Kingsford, C.: Asymptotically optimal mini-
mizers schemes. Bioinformatics 34(13), 13–22 (2018) https://doi.org/10.1093/
bioinformatics/bty258

20

https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1186/s13015-023-00226-2
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1186/s13015-024-00251-9
https://doi.org/10.1007/978-1-0716-3989-4_9
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1093/bioinformatics/btaa472
https://doi.org/10.1093/bioinformatics/btaa472
https://doi.org/10.1101/gr.277644.123
https://doi.org/10.1101/gr.277644.123
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/bty258

[14] Kille, B., Koerkamp, R.G., McAdams, D., Liu, A., Treangen, T.J.: A near-tight
lower bound on the density of forward sampling schemes. bioRxiv (2024) https:
//doi.org/10.1101/2024.09.06.611668

[15] Edgar, R.: Syncmers are more sensitive than minimizers for selecting conserved k-
mers in biological sequences. PeerJ 9 (2021) https://doi.org/10.7717/peerj.10805

[16] Shaw, J., Yu, Y.W.: Theory of local k-mer selection with applications to long-read
alignment. Bioinformatics 38(20), 4659–4669 (2022) https://doi.org/10.1093/
bioinformatics/btab790

[17] Pike, G., Alakuijala, J.: CityHash. https://github.com/aappleby/smhasher/blob/
master/src/City.cpp (2011)

[18] Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
In: Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5757, pp. 682–693 (2009). https://doi.org/10.1007/978-3-642-04128-0 61

[19] Pibiri, G.E., Trani, R.: Parallel and external-memory construction of mini-
mal perfect hash functions with pthash. IEEE Transactions on Knowledge and
Data Engineering 36(3), 1249–1259 (2024) https://doi.org/10.1109/TKDE.2023.
3303341

[20] Mohamadi, H., Chu, J., Vandervalk, B.P., Birol, I.: ntHash: recursive nucleotide
hashing. Bioinformatics 32(22), 3492–3494 (2016) https://doi.org/10.1093/
bioinformatics/btw397

[21] Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32(12), 201–208
(2016) https://doi.org/10.1093/bioinformatics/btw279

[22] Khan, J., Kokot, M., Deorowicz, S., Patro, R.: Scalable, ultra-fast, and low-
memory construction of compacted de bruijn graphs with cuttlefish 2. Genome
biology 23(1), 190 (2022) https://doi.org/10.1186/s13059-022-02743-6

[23] Cracco, A., Tomescu, A.I.: Extremely fast construction and querying of com-
pacted and colored de Bruijn graphs with GGCAT. Genome Research 33,
1198–1207 (2023) https://doi.org/10.1101/gr.277615.122

[24] Golan, S., Shur, A.M.: Expected density of random minimizers. arXiv (2024)
https://doi.org/10.48550/arXiv.2410.16968

[25] Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.: Designing small
universal k-mer hitting sets for improved analysis of high-throughput sequencing.
PLoS computational biology 13(10), 1005777 (2017) https://doi.org/10.1371/
journal.pcbi.1005777

21

https://doi.org/10.1101/2024.09.06.611668
https://doi.org/10.1101/2024.09.06.611668
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1093/bioinformatics/btab790
https://doi.org/10.1093/bioinformatics/btab790
https://github.com/aappleby/smhasher/blob/master/src/City.cpp
https://github.com/aappleby/smhasher/blob/master/src/City.cpp
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1186/s13059-022-02743-6
https://doi.org/10.1101/gr.277615.122
https://doi.org/10.48550/arXiv.2410.16968
https://doi.org/10.1371/journal.pcbi.1005777
https://doi.org/10.1371/journal.pcbi.1005777

[26] Ekim, B., Berger, B., Orenstein, Y.: A randomized parallel algorithm for effi-
ciently finding near-optimal universal hitting sets. In: Schwartz, R. (ed.) Research
in Computational Molecular Biology - 24th Annual International Conference,
RECOMB 2020, Padua, Italy, May 10-13, 2020, Proceedings. Lecture Notes
in Computer Science, vol. 12074, pp. 37–53 (2020). https://doi.org/10.1007/
978-3-030-45257-5 3

[27] Kille, B., Garrison, E., Treangen, T.J., Phillippy, A.M.: Minmers are a generaliza-
tion of minimizers that enable unbiased local jaccard estimation. Bioinformatics
39(9), 512 (2023) https://doi.org/10.1093/bioinformatics/btad512

[28] Loukides, G., Pissis, S.P., Sweering, M.: Bidirectional string anchors for improved
text indexing and top-k similarity search. IEEE Transactions on Knowledge and
Data Engineering 35(11), 11093–11111 (2023) https://doi.org/10.1109/TKDE.
2022.3231780

[29] Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.:
Improving the performance of minimizers and winnowing schemes. Bioinformatics
33(14), 110–117 (2017) https://doi.org/10.1093/bioinformatics/btx235

[30] Rossi, M., Silva, M.S.D., Ribeiro-Gonçalves, B.F., Silva, D.N., Machado, M.P.,
Oleastro, M., Borges, V., Isidro, J., Viera, L., Halkilahti, J., Jaakkonen, A., Palma,
F., Salmenlinna, S., Hakkinen, M., Garaizar, J., Bikandi, J., Hilbert, F., Carriço,
J.A.: INNUENDO whole genome and core genome MLST schemas and datasets
for Salmonella enterica (2018) https://doi.org/10.5281/zenodo.1322563

[31] Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (2018) https://doi.org/10.1093/bioinformatics/bty191

22

https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1093/bioinformatics/btad512
https://doi.org/10.1109/TKDE.2022.3231780
https://doi.org/10.1109/TKDE.2022.3231780
https://doi.org/10.1093/bioinformatics/btx235
https://doi.org/10.5281/zenodo.1322563
https://doi.org/10.1093/bioinformatics/bty191

Table 3: Probability distribution of the configurations (C,Cc)
(as used, e.g., by miniception [10]) for w = 5, k = 11, and s = 6.
In this case, the computed density is 0.2929.

(C,Cc) P{context has configuration (C,Cc)} P{context is charged }

(0, 0) 0.0 0.33
(1, 0) 2.65× 10−1 0.0
(1, 1) 0.0 1.0
(2, 0) 1.76× 10−1 0.0
(2, 1) 2.31× 10−1 0.5
(2, 2) 1.11× 10−1 1.0
(3, 0) 4.11× 10−2 0.0
(3, 1) 1.09× 10−1 0.33
(3, 2) 2.56× 10−2 0.67
(4, 0) 3.37× 10−3 0.0
(4, 1) 2.25× 10−2 0.25
(4, 2) 1.21× 10−2 0.5
(5, 0) 0.0 0.0
(5, 1) 1.73× 10−3 0.2
(5, 2) 2.50× 10−3 0.4
(6, 0) 0.0 0.0
(6, 1) 0.0 0.17
(6, 2) 1.92× 10−4 0.33

A Probability distributions

Table 3 and Table 4 report the probability distribution for the count configurations
(C,Cc) and (O,C,Oc, Cc) respectively, as used in the analysis from Section 3.

B Density plots for σ = 256

Figure 6a and Figure 6b show the same density plots as, respectively, Figure 3 and
Figure 5, but for a the larger alphabet σ = 256. In this case, we therefore used s = 1.
Note how all methods exactly match the lower bound by Kille et al. [14] for k ≡ 1
(mod w).

23

Table 4: Probability distribution of the configurations (O,C,Oc, Cc) (as used
by the open-closed minimizer from Section 3.1) for w = 5, k = 11, and s = 6.
In this case, the computed density is 0.2864.

(O,C,Oc, Cc) P{context has configuration (O,C,Oc, Cc)} P{context is charged }

(1, 0, 0, 0) 1.9481× 10−1 0
(1, 0, 1, 0) 1.2987× 10−2 1
(2, 0, 0, 0) 1.2987× 10−2 0
(2, 0, 1, 0) 7.9004× 10−2 0.5
(2, 0, 2, 0) 2.4351× 10−2 1
(1, 1, 0, 0) 9.7763× 10−2 0
(1, 1, 1, 0) 7.0346× 10−2 1
(1, 1, 0, 1) 1.3139× 10−1 0
(1, 1, 1, 1) 2.6948× 10−2 1
(2, 1, 1, 0) 9.0488× 10−3 0.5
(2, 1, 2, 0) 5.6818× 10−3 1
(2, 1, 0, 1) 4.9784× 10−3 0
(2, 1, 1, 1) 1.3853× 10−2 0.5
(0, 2, 0, 0) 2.8860× 10−2 0
(0, 2, 0, 1) 1.5584× 10−2 0.5
(1, 2, 0, 0) 1.8909× 10−2 0
(1, 2, 1, 0) 2.0202× 10−2 1
(1, 2, 0, 1) 4.8641× 10−2 0
(1, 2, 1, 1) 3.1764× 10−2 1
(1, 2, 0, 2) 1.5079× 10−2 0
(2, 2, 2, 0) 2.7056× 10−4 1
(2, 2, 1, 1) 1.7977× 10−3 0.5
(2, 2, 0, 2) 5.5315× 10−4 0
(0, 3, 0, 0) 2.6726× 10−2 0
(0, 3, 0, 1) 4.2544× 10−2 0.33
(0, 3, 0, 2) 4.9964× 10−3 0.67
(1, 3, 0, 0) 1.7436× 10−3 0
(1, 3, 1, 0) 1.5332× 10−3 1
(1, 3, 0, 1) 9.0308× 10−3 0
(1, 3, 1, 1) 4.9964× 10−3 1
(1, 3, 0, 2) 6.5055× 10−3 0
(0, 4, 0, 0) 3.3069× 10−3 0
(0, 4, 0, 1) 1.8025× 10−2 0.25
(0, 4, 0, 2) 8.1530× 10−3 0.5
(1, 4, 1, 0) 6.0125× 10−5 1
(1, 4, 0, 1) 8.1169× 10−4 0
(1, 4, 1, 1) 1.8038× 10−4 1
(1, 4, 0, 2) 1.1604× 10−3 0
(0, 5, 0, 1) 1.7256× 10−3 0.2
(0, 5, 0, 2) 2.4110× 10−3 0.4
(1, 5, 1, 1) 6.0125× 10−6 1
(1, 5, 0, 2) 9.0188× 10−5 0
(0, 6, 0, 2) 1.9240× 10−4 0.33

24

de
ns

ity

0.050

0.054

0.057

0.061

0.065

0.069

0.072

0.076

0.080

0.083

0.087

k
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

OC O C M D DD lower bound

(a)

de
ns

ity

0.050

0.053

0.056

0.059

0.062

0.066

0.069

0.072

0.075

0.078

0.081

k
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

mod-OC mod-O mod-C mod-M mod-D mod-DD lower bound

(b)

Fig. 6: Density for w = 24 and by varying k, measured on a random string of ten mil-
lion i.i.d. random characters for σ = 256. For all methods that require the parameter
s, we use s = 1 for the solid lines. The dashed lines, instead, use the best choice of s.
We use r = 1 for all methods.

25

	Introduction
	Preliminaries
	The small-k case: the open-closed minimizer
	The open-closed minimizer
	Analysis
	Density

	The large-k case: the extended mod-minimizer
	The extended mod-minimizer
	Analysis
	Density

	Conclusions and future work
	Probability distributions
	Density plots for =256

