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Abstract

Motivation: Sampling k-mers is a ubiquitous task in sequence analysis algorithms. Sampling
schemes such as the often-used random minimizer scheme are particularly appealing as they
guarantee at least one k-mer is selected out of every w consecutive k-mers. Sampling fewer k-mers
often leads to an increase in efficiency of downstream methods. Thus, developing schemes that
have low density, i.e., have a small proportion of sampled k-mers, is an active area of research.
After over a decade of consistent efforts in both decreasing the density of practical schemes and
increasing the lower bound on the best possible density, there is still a large gap between the two.

Results: We prove a near-tight lower bound on the density of forward sampling schemes, a
class of schemes that generalizes minimizer schemes. For small w and k, we observe that our bound
is tight when k ≡ 1 (mod w). For large w and k, the bound can be approximated by 1

w+k
⌈w+k

w
⌉.

Importantly, our lower bound implies that existing schemes are much closer to achieving optimal
density than previously known. For example, with the current default minimap2 HiFi settings
w = 19 and k = 19, we show that the best known scheme for these parameters, the double
decycling-set-based minimizer of Pellow et al., is at most 3% denser than optimal, compared to
the previous gap of at most 50%. Furthermore, when k ≡ 1 (mod w) and the alphabet size σ goes
to ∞, we show that mod-minimizers introduced by Groot Koerkamp and Pibiri achieve optimal
density matching our lower bound.

Availability and implementation:
Minimizer implementations: github.com/RagnarGrootKoerkamp/minimizers
ILP and analysis: github.com/treangenlab/sampling-scheme-analysis

1 Introduction

For over a decade, k-mer sampling schemes have served as a ubiquitous first step in many classes of
bioinformatics tasks. By sampling k-mers in a way which ensures that two similar sequences will have
similar sets of sampled k-mers, sampling schemes enable methods to bypass the need to compare entire
sequences at the base level and instead allow them to work more efficiently using the sampled k-mers.

Local sampling schemes satisfy a window guarantee that at least one k-mer is selected out of
every window of w consecutive k-mers. Most schemes used in practice, such as the random minimizer
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scheme (Schleimer et al., 2003; Roberts et al., 2004), are forward schemes that additionally guarantee
that k-mers are sampled in the order in which they appear in the original sequence. These properties
are particularly appealing since they guarantee that no region is left unsampled.

As the purpose of these schemes is to reduce the computational burden of downstream methods
while upholding the window guarantee, the primary goal of most new schemes is to minimize the
density, i.e., the expected proportion of sampled k-mers. Over the past decade, many new schemes have
been proposed that obtain significantly lower densities than the original random minimizer scheme.

For example, there are schemes based on hitting sets (Orenstein et al., 2016; Marçais et al., 2017,
2018; DeBlasio et al., 2019; Ekim et al., 2020; Pellow et al., 2023; Golan et al., 2024), schemes that
focus on sampling positions rather than k-mers (Loukides and Pissis, 2021; Loukides et al., 2023),
schemes that use an ordering on t-mers (t < k) to decide which k-mer to sample (Zheng et al., 2020;
Groot Koerkamp and Pibiri, 2024), and schemes that aim to minimize density on specific input
sequences (Zheng et al., 2021b; Hoang et al., 2022). All of these improvements notwithstanding, it is
still unknown how close these schemes are to achieving minimum density.

A trivial lower bound on density given by the window guarantee is 1
w , and recently Groot Koerkamp

and Pibiri (2024) improved the bound of Marçais et al. (2018) from 1.5+ 1
2w

w+k to 1.5
w+k−0.5 . However, for

many practical values of w and k, there is a sizeable gap between these lower bounds and the density
of existing schemes. This raises the question whether schemes with density much closer to 1

w exist, but
have not been found yet, or whether existing schemes are already very close to optimal and it is the
lower bound that needs improvement. Our new lower bound closes most of the gap, and thus answers
this question: Indeed, especially for k ≥ w, the best existing schemes have near-optimal density in
many cases. This allows future research to focus on improving other sampling scheme metrics, such as
the conservation described in Edgar (2021) and Shaw and Yu (2022).

1.1 Contributions
Main lower bound theorem. We prove a novel lower bound on the density of forward schemes

that is strictly tighter than all previously established lower bounds for all w, k, and alphabet size σ:

Theorem 1. Let f be a (w, k)-forward sampling scheme and Mσ(p) count the number of aperiodic
necklaces of length p over an alphabet of size σ. Then, the density of f is at least

gσ(w, k) :=
1

σw+k

∑
p |(w+k)

Mσ(p)
⌈ p
w

⌉
≥
⌈
w+k
w

⌉
w + k

≥ 1

w
, (1)

where the middle inequality is strict for w > 1.

We prove that this bound can be extended to work for more general classes of sampling schemes,
such as the local schemes described by Marçais et al. (2018) and the multi-local schemes described by
Kille et al. (2023).

Comparison with optimal schemes for small parameters. We show that our lower bound
is tight for some small w, k, and σ by using an integer linear program to construct schemes whose
density matches our lower bound. This marks the first time that there is an analytical description of a
tight minimum density of any forward scheme. We conjecture that when k ≡ 1 (mod w), there exist
schemes with density matching our lower bound.

Comparison with practical schemes for large parameters. To show that our bound is
significantly closer to the density achieved by existing schemes compared to previous lower bounds, we
replicate the benchmark from Groot Koerkamp and Pibiri (2024) for a selection of w and k (Fig. 3).
For example, with the default minimap2 (Li, 2018) HiFi settings w = 19 and k = 19, the lower bound
goes up from 50% of the density achieved by the double decycling based method to 97% of the achieved
density (Table 1).
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Analysis of the mod-minimizer. Finally, our new lower bound implies that the mod-minimizer
scheme (Groot Koerkamp and Pibiri, 2024) is optimal when k ≡ 1 (mod w) and σ is large. Indeed, for
the ASCII alphabet (σ = 256), the mod-minimizer scheme density is consistently within 1% of the
lower bound when k ≡ 1 (mod w) (Fig. 4 in Supplement D).

2 Background

Notation. We begin by defining some necessary notation, as well as definitions of mathematical
concepts that will be used throughout the work. We use [n] to refer to the set {0, 1, . . . , n− 1}. The
alphabet is denoted by Σ and has size σ := |Σ|, with σ = 4 for DNA. The expression a | b indicates
that a divides b. The summation

∑
a|b is over all positive divisors a of b. We use a mod m for the

remainder (in [m]) of a after dividing by m and we use a ≡ b (mod m) to indicate that a and b have
the same remainder modulo m. Given a string W , W [i, j) refers to the substring of W containing the
characters at 0-based positions i up to j − 1 inclusive. For two strings X and Y , XY represents the
concatenation of X and Y .

Classes of sampling schemes. There are multiple established classes of sampling schemes. We
begin by drawing a distinction between schemes with and without a window guarantee that guarantees
that at least one every w k-mers is sampled. While schemes without a window guarantee, such as
fracminhash (Irber et al., 2022), are often efficient to compute, the lack of a guarantee on the distance
between sampled k-mers makes them ineffective or inefficient for certain tasks such as indexing and
alignment. Indeed, we only consider schemes with a window guarantee:

Definition 1. A (w, k)-local scheme with window guarantee w and k-mer size k on an alphabet Σ
corresponds to a sampling function f : Σw+k−1 → [w].

In other words, given a window of w + k − 1 characters (w consecutive k-mers), the output of the
sampling function f(W ) is an integer in [w] which represents the index of the sampled k-mer in W .
Recently, Kille et al. (2023) proposed a generalization of (w, k)-local schemes which samples at least s
k-mers out of every w instead of at least 1 and we extend our results to these more general schemes in
Supplement A.

Local schemes have no restrictions on which of the w k-mers can be selected for each window, but
forward schemes are a subset of local schemes that enforce the restriction that they never select a
k-mer which occurs before a previously selected k-mer.

Definition 2. A (w, k)-local scheme is also (w, k)-forward if for all strings W ∈ Σw+k representing
two adjacent windows,

f(W [0, w + k − 1)) ≤ f(W [1, w + k)) + 1.

Definition 3. The density d(f) of a sampling scheme f is defined as the expected proportion of
sampled positions from an infinite, uniformly random string.

For a further background on types of sampling schemes, we refer to Shaw and Yu (2022), Zheng
et al. (2023), Groot Koerkamp and Pibiri (2024), and Ndiaye et al. (2024).

De Bruijn graphs. Let Bn,σ = (V,E) denote the complete De Bruijn graph of order n, which has
as vertices all strings of length n, V = Σn, and edges between vertices that overlap in n− 1 positions,
E = {(X,X[1, n)c) | X ∈ V, c ∈ Σ}. When σ is clear from the context or irrelevant for a particular
discussion, it is omitted. It is worth noting that the vertices of Bn+1 correspond to edges of Bn.

For each string s of length n, the n rotations of s induce a pure cycle in Bn consisting of (up to) n
vertices cyclically connected by edges. Note that when s is repetitive, e.g., a single repeated character
or some other repeated string, the length of the cycle will be a divisor of n. These pure cycles are also
called necklaces. The set of necklaces of length n corresponds to a partitioning of the vertices of Bn

3



into a vertex-disjoint set of pure cycles. We use Cn to refer to this set of pure cycles of Bn, and for
c ∈ Cn, we write |c| for the number of vertices in the cycle.

When a string of length n has n unique rotations, the corresponding necklace is said to be aperiodic.
The total number of necklaces and the number of aperiodic necklaces of length n are given by Moreau
(1872) (and see also Riordan (1957)) as respectively

Nσ(n) =
1

n

∑
p|n

φ(n/p) · σp, Mσ(n) =
1

n

∑
p|n

µ(n/p) · σp,

where φ(p) is Euler’s totient function that counts the number of integers in [p] coprime to p. The formula
Mσ(n) counting aperiodic necklaces follows from the formula for Nσ(n) via Möbius inversion (Möbius,
1832), where µ is the Möbius function defined to be 0 if n is divisible by a square (> 1) and µ(n) = (−1)q

otherwise, where q is the number of prime factors of n.

Charged contexts. The context of a window of length w + k − 1 in a sequence is the set of
preceding windows that influences whether the current window samples a new position.

For a local scheme to select a new position, none of the previous w − 1 windows may have selected
the same k-mer as the current window. As a result, the context for local schemes consists of 2w+ k− 2
characters: the current window of w k-mers as well as the w−1 windows preceding the current window.

For a forward scheme, however, as soon as a window samples a different position than the preceding
window, this position must be a new position. Thus, one needs only to consider the context of two
consecutive windows of w k-mers, for a total of w + k characters.

When a sampling scheme selects a new position for the last window in a context, the context is
charged. Marçais et al. (2017) showed that the density of a scheme f can be defined as the proportion
of contexts which are charged. In the case of forward schemes, each edge in Bw+k−1 represents a
context, and the charged contexts are the edges (u, v) for which f(u) ̸= f(v) + 1.

Universal hitting sets. In 2021, Zheng et al. (2021a) related the density of forward and local
schemes to the concept of universal hitting sets (UHS). A (w, ℓ)-UHS is defined as a set of ℓ-mers U
such that any sequence of w adjacent ℓ-mers must contain at least one ℓ-mer from U . Theorem 1
of Zheng et al. (2021a) showed that when k = 1, one can use the minimum size of a (w, ℓ=w+ k)-UHS
to bound the density of (w, k=1)-forward schemes, and the minimum size of a (w, ℓ=2w + k − 2)-UHS
to bound the density of a (w, k=1)-local schemes.

3 Theoretical results

In this section, we prove our main result: an improved lower bound on the density of forward sampling
schemes. We first generalize some existing theorems to arbitrary w and k (Sections 3.1 and 3.2), after
which our main theorem follows in Section 3.3.

3.1 A lower bound on the size of a (w, ℓ)-UHS
We begin by considering a (w=2, ℓ)-UHS. A (2, ℓ)-UHS is equivalent to a vertex cover in Bℓ, i.e., a
subset of vertices such that each edge in Bℓ is adjacent to at least one vertex in the subset. Lichiardopol
(2006) used the fact that for every cycle C, at least ⌈|C|/2⌉ of its vertices must be in a vertex cover,
and obtained a lower bound on the size of a vertex cover by partitioning Bℓ into its pure cycles. We
naturally extend this argument to obtain a lower bound on the cardinality of a (w, ℓ)-UHS for any
w ≥ 2.

Proposition 4. Let Mσ(p) count the number of aperiodic necklaces of length p. For any (w, ℓ)-UHS
U ,

|U | ≥
∑
p|ℓ

Mσ(p)
⌈ p
w

⌉
.
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Proof. The pure cycles of Cℓ partition the vertices of Bℓ. For any simple cycle of size p in Bℓ, a
(w, ℓ)-UHS must contain at least ⌈p/w⌉ ℓ-mers. As there is a one-to-one correspondence between the
pure cycles of length p | ℓ in Bℓ and the Mσ(p) aperiodic necklaces of length p, we have

|U | ≥
∑
c∈Cℓ

⌈
|c|
w

⌉
=
∑
p|ℓ

Mσ(p)
⌈ p
w

⌉
.

Fig. 1b provides a depiction of a minimum (2, 4)-UHS as well as the pure-cycle partitioning of B4

on a binary alphabet. Notably, the pure cycle (0011, 0110, 1100, 1001) has 3 vertices in the UHS, even
though the lower bound given by Proposition 4 only requires it have 2. This is an example where the
lower bound is not tight.

For certain values of w and ℓ, such as when ℓ is prime or w = 2 and ℓ is odd, Proposition 4 can be
simplified to remove the summation and ceil function (Supplement B).

Proposition 4 is the core of the proof of Theorem 1 and already has the right structure. The
remainder of this section translates this result on universal hitting sets to a result on the density of
sampling schemes.

3.2 A connection between sampling scheme density and UHS size
Zheng et al. (2021a, Theorem 1) show a connection between universal hitting sets and the density
of sampling schemes when k = 1. We naturally extend their result to k ≥ 1 for both local schemes
(Lemma 5) and forward schemes (Corollary 6).

Lemma 5. Let f be a (w, k)-local scheme, and let Cf be its corresponding set of charged contexts
defined as the set of strings W of length 2w + k − 2 for which the last window W [w − 1, 2w + k − 2)
selects a position w − 1 + f(W [w − 1, 2w + k − 1)) not selected by any previous window:

Cf :={W ∈ Σ2w+k−2 | ∀ 0 ≤ i ≤ w − 2,

f(W [w − 1, 2w + k − 2)) + (w − 1) ̸= f(W [i, i+ w + k − 1)) + i}.

Then, Cf is a (w, 2w + k − 2)-UHS.

Proof. For the sake of a contradiction, suppose there is a walk of length w in the De Bruijn graph of
order (2w + k − 2), say (W0, . . . ,Ww−1), that avoids Cf . Let S be the spelling of the walk, i.e., the
sequence of length 3w + k − 3 such that S[i, i+ 2w + k − 2) = Wi. Since Ww−1 /∈ Cf and S contains
Ww−1, this implies that on the last (w+ k− 1)-mer of Ww−1 (i.e., S[2w− 2, 3w+ k− 3)), f selects an
index j ≥ 2w − 2 in S which has already been picked.

Since 0 ≤ f(·) ≤ w − 1 and j ≥ 2w − 2, the first window that selects position j must begin at
an index m ≥ w − 1. Therefore, the context Wm−w+1 = S[m − (w − 1),m+ w + k − 1) is charged,
as f selects a previously unselected position when applied to its last (w + k − 1)-mer. By definition,
Wm−w+1 ∈ Cf , contradicting our supposition and therefore Cf is a (w, 2w + k − 2)-UHS.

Identically, one can consider contexts for a (w, k)-forward scheme f , which requires only verifying
that the selection for a window of length w + k − 1 is distinct from the selection for the previous
window. Therefore, the length of a context for forward f is only w + k. As above, every w contexts
must have at least one charged context, leading to the following conclusion:

Corollary 6. If f is a (w, k)-forward scheme and Cf is its corresponding set of charged contexts,
defined as Cf = {W ∈ Σw+k | f(W [0, w+k−1)) ̸= f(W [1, w+k))+1}, then Cf is a (w,w+k)-UHS.

As all contexts of a particular length ℓ are equally likely to occur in an infinite, uniform random
string, the proportion of charged contexts corresponds to the density of the sampling scheme (Marçais
et al., 2017), i.e. d(f) = |Cf |/σℓ, where ℓ = w + k for forward schemes and ℓ = 2w + k − 2 for local
schemes. An example of the charged contexts of a (2, 2)-forward scheme and the corresponding UHS is
depicted in Fig. 1.
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Charged context

(a) (b)

Figure 1: (a) A De Bruijn graph B3 corresponding to a minimum density (w=2, k=2)-forward scheme.
The underlined characters in each vertex represent the 2-mer that is selected for that window. The
solid edges represent the charged contexts and the edge colors represent the pure cycles in B4 (not in
B3 itself). For characters ci, each edge (c0c1c2, c

′
0c

′
1c

′
2) in B3 corresponds to the vertex c0c1c2c

′
2 in B4.

(b) The corresponding (w=2, ℓ=4)-UHS in B4. The vertices are partitioned by color, representing the
pure-cycles. The 2-mer(s) selected in each context are underlined. The vertices with a double border
represent the charged edges in B3 in (a) and the corresponding (2, 4)-UHS. Each pure cycle c has at
least ⌈|c|/w⌉ vertices in the UHS.

3.3 Lower bounds on local and forward scheme density
We are now ready to state and prove our main theorem.

Theorem 1. Let f be a (w, k)-forward sampling scheme and Mσ(p) count the number of aperiodic
necklaces of length p over an alphabet of size σ. Then, the density of f is at least

gσ(w, k) :=
1

σw+k

∑
p |(w+k)

Mσ(p)
⌈ p
w

⌉
≥
⌈
w+k
w

⌉
w + k

≥ 1

w
, (1)

where the middle inequality is strict for w > 1.

Proof. Due to Corollary 6 and Marçais et al. (2017), we can see that a (w, k)-forward sampling scheme
of density d(f) implies a (w, ℓ=w + k)-UHS of size σw+k · d(f). By Proposition 4, this implies that
every forward sampling scheme has a density of at least gσ(w, k), and hence d(f) ≥ gσ(w, k) follows.

For any p that divides w + k, we have ⌈ p
w ⌉ ≥ p

w+k ⌈
w+k
w ⌉, with strict inequality when p = 1

and w > 1. Substituting this in gσ(w, k), the middle inequality follows directly using the identity
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∑
p|w+k p · Mσ(p) = σw+k that counts the number of strings of length w + k partitioned by their

shortest period.
The last inequality follows directly from 1

w+k

⌈
w+k
w

⌉
≥ 1

w+k
w+k
w = 1/w.

As we will see in Section 4, gσ(w, k) is a tight bound for many small cases. Since its formula is
somewhat unwieldy, 1

w+k ⌈
w+k
w ⌉ can be used as an approximation that quickly approaches gσ(w, k)

(Fig. 2). Simple arithmetic shows that both gσ(w, k) and 1
w+k ⌈

w+k
w ⌉ improve the previous lower bound

of 1.5
w+k−0.5 of Groot Koerkamp and Pibiri (2024).
Given a (w, k)-local scheme fk, we can construct a (w, k′ ≥ k)-local scheme fk′ of the same density

by ignoring the last k′ − k characters in each window, i.e. fk′(W ) = fk(W [0..(w + k)). This directly
implies d(fk) = d(fk′) (Zheng et al., 2021a). It follows that the minimum density of a (w, k)-local or
forward scheme is monotonically decreasing as k increases. However, as can be seen in Fig. 2, gσ(w, k)
is not a monotonically decreasing function. The local maxima appear to be at k ≡ 1 (mod w), which
motivates the following improved lower bound.

Theorem 2. For any (w, k)-forward scheme f , an improved lower bound g′ is given by

d(f) ≥ g′σ(w, k) := max(gσ(w, k), gσ(w, k
′)) ≥ max

(
1

w + k

⌈
w + k

w

⌉
,

1

w + k′

⌈
w + k′

w

⌉)
,

where k′ is the smallest integer ≥ k such that k′ ≡ 1 (mod w).

Remark 7. Similar to Theorem 1, Lemma 5 implies that any (w, k)-local scheme f has density at
least d(f) ≥ gσ(w,w + k − 2). As this bound is in terms of gσ, the improved bound in Theorem 2 can
be applied to local schemes as well, i.e., for any (w, k)-local scheme f , an improved lower bound is
given by

d(f) ≥ g′σ(w,w + k − 2).

4 Empirical tightness of our bounds

Here, we compare our bounds gσ and g′σ to existing lower bounds. Further, we show how tight
these bounds are for small w, k, and σ by searching for optimal schemes via an integer linear
programming (ILP) formulation. We also show how close existing sampling scheme densities are to
g′σ for practical choices of w, k, and σ. Finally, we show when the recently described mod-minimizer
scheme (Groot Koerkamp and Pibiri, 2024) achieves optimal density as σ → ∞.

ILP description. We use an ILP to search for minimum density forward sampling schemes. In
short, we use a single integer variable xW ∈ [w] for every window W of length w+k− 1 (corresponding
to a vertex in Bw+k−1) that indicates the position of the chosen k-mer, and a single boolean variable
y(W,W ′) for each edge in Bw+k−1 that indicates whether the corresponding context is charged. On
each edge, we require that the scheme be forward. The objective function is to minimize the number
of charged edges. To reduce the search space, we add an additional constraint corresponding to our
lower bound gσ by requiring that for each pure cycle of length |c| in Bw+k, at least ⌈|c|/w⌉ of the
corresponding edges in Bw+k−1 are charged. Further details, including the ILP formulation for local
schemes, can be found in Supplement C.

Comparison against optimal schemes for small k. We used Gurobi (Gurobi Optimization,
LLC, 2024) to solve the ILP for all combinations of w, k, and σ such that 1 ≤ w ≤ 12, 1 ≤ k ≤ 12, and
2 ≤ σ ≤ 4 for both forward and local schemes and limited the runtime for each instance to 12 hours on
128 threads. All results are reported in Table 2 in Supplement D. While the additional constraint on
pure cycles corresponding to gσ significantly sped up the search, for most large w, k, and σ, the ILP
failed to terminate with an optimal solution in the allotted time. As a result, we restrict most of our
analysis to the following three cases: fixed alphabet size σ = 2, fixed window size w = 2, and fixed
k-mer size k = 1 (Fig. 2).
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Figure 2: Comparison of forward scheme lower bounds and optimal densities for small w, k, and σ.
Optimal densities were obtained via the ILP and are plotted as black circles that are solid when the
optimal density matches our lower bound, g′σ, and hollow otherwise. Each column corresponds to a
parameter being fixed to the lowest non-trivial value, i.e., σ = 2 in the first column, w = 2 in the
second column, and k = 1 in the third column. Note that the x-axis in the third column corresponds
to w, not k.

For all (w, k, σ) where k ≡ 1 (mod w) (including when k = 1), the minimum density exactly
matches our lower bound gσ(w, k). Additionally, when σ = 2 and w = 2, the minimum density was
equal to g′σ(w, k).

Comparison against existing schemes for large k. Using a sequence of 10 million random
characters over alphabet size σ = 4, we approximated the density of recent sampling schemes using the
benchmarking implementation from Groot Koerkamp and Pibiri (2024). To compare each density to
the particular proportion of selected k-mers on a genomic sequence, we also ran all sampling schemes
on the human Y chromosome (Rhie et al., 2023) after removing all non-ACTG characters. The
densities of the best performing methods, Miniception (Zheng et al., 2020), double decycling-set-based
minimizers (Pellow et al., 2023), and mod-minimizers (Groot Koerkamp and Pibiri, 2024) are plotted
in Fig. 3 along with random minimizers and lower bounds.

The ratio between the minimum achieved densities and lower bounds for a selection of (w, k) pairs
used by existing k-mer based methods are presented in Table 1. Additional results for σ ∈ {2, 256}
and w ∈ {2, 50} are provided in Fig. 4 in Supplement D.

The mod-minimizer has optimal density for large σ when w ≡ k (mod 1). When w
and k are constant and σ → ∞, the probability of duplicate characters in a window goes to 0. This
implies that we can use t = 1 for the mod-minimizer. When k ≡ t = 1 (mod w), the density of the
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Figure 3: Comparison of existing schemes to lower bounds with practical parameters. Densities are
calculated by applying each scheme to a random sequence of 10 million characters over an alphabet of
size σ = 4 (dotted lines) and are compared with the corresponding proportion of sampled k-mers on
the human Y chromosome (Rhie et al., 2023) (soft lines). The mod-minimizer uses parameter r = 4,
and miniception uses parameter max(4, k − w). The window sizes 5 and 19 are the default window
sizes for Kraken2 (Wood et al., 2019) and minimap2 (-ax hifi) (Li, 2018), respectively. For SSHash,
w = 12 was the window size used when indexing the human genome (Pibiri, 2022).

mod-minimizer (Theorem 10 of Groot Koerkamp and Pibiri (2024)) is given by

⌊w+k−2
w ⌋+ 2

w + k
+ o(1/ℓ).

The o(1/ℓ) term only accounts for duplicate t-mers, and hence disappears when σ → ∞. We get

⌊w+k−2
w ⌋+ 2

w + k
=

⌊k+3w−2
w ⌋

w + k
=

⌈k+2w−1
w ⌉

w + k

k≡1 (mod w)
=

⌈w+k
w ⌉

w + k
.

Thus, the mod-minimizer has density equal to the lower bound provided by Theorem 1 when σ goes to
∞ and w and k ≡ 1 (mod w) are fixed.

In practice, for σ = 256 the mod-minimizer scheme is within 1% from optimal when k ≡ 1 (mod w)
(Fig. 4 in Supplement D). When σ = 4 (Fig. 3), a t > 1 must be used, causing the density plot to “shift
right” compared to the lower bound. Because of that, the mod-minimizer does not quite match the
lower bound for practical values of σ.
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Table 1: Minimum densities achieved by existing sampling schemes for default parameters of frequently-
used bioinformatics methods (σ = 4). The gap percentage describes the how much larger the lowest
achieved density is than the lower bound and is calculated as 100 · d(f)−LB(w,k)

LB(w,k) where LB(w, k) = 1
w

for the old gap and LB(w, k) = g′4(w, k) for the new gap. While Groot Koerkamp and Pibiri (2024)
showed that 1.5

w+k−0.5 is also a lower bound, 1
w is tighter for all of the parameter choices in the table.

For SSHash (Pibiri, 2022), we show parameters used for indexing a single human genome.

Application (w, k)
Random Best Lower bound Gap (%)

2/(w + 1) Scheme Density 1/w g′ 1/w g′

Kraken2 (5, 31) 0.333 Mod-mini 0.226 0.200 0.222 12.8 1.6
SSHash (12, 20) 0.154 Mod-mini 0.120 0.083 0.108 43.9 10.9

minimap2, hifi (19, 19) 0.100 dbl decycling 0.079 0.053 0.077 50.1 2.7

5 Discussion

5.1 Conjecture on when our lower bound is tight

Analytically, it is clear that g′σ(w, k) is much larger than 1
w . In all cases, g′σ(w, k) is nearly tight, if not

completely. In particular, our bound is tight for all 40 tested parameter sets where k ≡ 1 (mod w),
leading us to our conjecture:

Conjecture 1. For any w and k satisfying k ≡ 1 (mod w), there exists a (w, k)-forward sampling
scheme f such that d(f) = gσ(w, k).

While the minimum size of a decycling set, i.e., a (w=∞, ℓ)-UHS, is well-known to be Nσ(ℓ) (Mykkeltveit,
1972), very little is known about the minimum size of a (w, ℓ)-UHS for finite w. In addition to providing
the minimum density of a (w, k)-forward scheme for k ≡ 1 (mod w), proving Conjecture 1 would also
determine the minimum size of a (w, ℓ=w + k)-UHS when k ≡ 1 (mod w).

5.2 Existing schemes are nearly optimal when k ≥ w or σ is large
A natural investigation which follows our proposed lower bound is to determine the gap between
g′σ(w, k) and current forward scheme densities. Previously, the gap between known densities and lower
bound was rather large, making it unclear how much more the density could be reduced.

In Table 1, we observe that existing schemes are already within 11% from the optimal density for
practical values of w and k across different applications, and in many cases are even within 3% of the
optimal density. In Fig. 3, we see that this difference holds not just for the specific (w, k) in Table 1,
but for most k ≥ w. This is much more informative than the previous lower bound of 1/w, which
implied that most current schemes are at most 50% denser than optimal for many of the parameters
in Fig. 3.

For alphabets much larger than DNA (σ = 4), such as the ASCII alphabet (σ = 256), we observe
that when k ≡ 1 (mod w), the mod-minimizer scheme recently proposed by Groot Koerkamp and
Pibiri (2024) is at most 1% denser than optimal and furthermore, we show that it is optimal as σ → ∞.
This makes the mod-minimizer scheme the first practical scheme for which there exist finite parameters
k and w for which it is close to optimal.

5.3 Tightening the bound for small k
Our new bound for forward schemes always improves over 1/w and appears tight when k ≡ 1 (mod w).
This leads to an increasingly close bound for k ̸≡ 1 (mod w) as k increases, but leaves a large gap
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when 1 < k < w. A better understanding of these small cases will be necessary to obtain a tight lower
bound for all w and k. Looking at Fig. 3 and Fig. 4 in Supplement D, one might conjecture that the
double decyling-set-based methods Pellow et al. (2023) are near-optimal, but subsequent work such as
the greedy minimizer (Golan et al., 2024) has shown better schemes are possible. From Fig. 2, we
already know that our lower bound is not always tight, so this leaves the question:

Open problem 1. How close can practical sampling schemes get to the density given by our lower
bound?

5.4 Extending the bound to local schemes
For local schemes, though, our bound appears much less tight. We identified 8 sets of (w, k, σ) where
local schemes can obtain lower densities than their forward counterparts. In all cases, however,
the difference between the local and forward densities was minuscule, with the largest difference of
being found for (w = 4, k = 2, σ = 2) where the density decreased from 0.375 to 0.371 (Table 2 in
Supplement D). Nevertheless, for some parameters, local schemes are able to achieve densities lower
than our g′σ(w, k) lower bound for forward schemes. Given the trend observed in Table 2, we arrive at
our final open problem:

Open problem 2. How much lower can the density of a (w, k)-local scheme be compared to a
(w, k)-forward scheme?
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A (s, w, k)-multi-local schemes

Given a set A, we define
(
A
s

)
as the set of all subsets of A of cardinality s.

Definition 8. A (s, w, k)-multi-local scheme corresponds to a sampling function f : Σw+k−1 →
(
[w]
s

)
,

where s is the sketch size, w is the window guarantee, k is the k-mer size, and σ = |Σ| is the alphabet
size.

A quick substitution reveals that (s, w, k)-multi-local schemes are equivalent to (w, k)-local schemes
when s = 1. These schemes enable a stricter window guarantee by ensuring that at least s k-mers are
selected for every window of w k-mers. However, it was recently shown that this generalization can
also be used to outline a more relaxed window guarantee (Kille et al., 2023).

Consider the case where instead of desiring at least one sampled k-mer for every w k-mers, the
requirement is to have s k-mers sampled for every sw k-mers. This latter goal can be accomplished by
a (w, k)-local scheme, but as was shown in Kille et al. (2023), a much lower density can be obtained
with an (s, sw, k)-multi-local scheme.

Here, we will show how the bounds in the main text can be extended to yield a lower bound for
(s, w, k)-multi-local schemes.

A (s, w, ℓ)-multi-UHS is defined as a mapping α : Σℓ → [s+1] that assigns weights to vertices in Bℓ

such that any sequence of w adjacent ℓ-mers must have a combined weight of at least s. Again, when
s = 1, this corresponds to the (w, ℓ)-UHS described in the main text. We now provide an extension to
Proposition 4 which provides a lower bound on the size of a (s, w, ℓ)-multi-UHS.

Proposition 9. For any (s, w, ℓ)-multi-UHS α,∑
W∈Σℓ

α(W ) ≥
∑
p|ℓ

Mσ(p) ·
⌈sp
w

⌉
.

Proof. We first show that for any simple cycle of size p in Bℓ, the combined weight of the cycle must
be at least

⌈
sp
w

⌉
. Let W0, . . . ,Wp−1 be the vertices in a cycle of length p. Consider the walk of length

w along the cycle starting at W0. We have that
∑

i∈[w] α(Wi) ≥ s where indices are taken modulo p.
This same inequality holds for all p unique paths of length w along the cycle and summing over all of
them yields

∑
i∈[p] α(Wi) ≥ sp

w . Finally, since
∑

i∈[p] α(Wi) must be an integer and each pure cycle in
Cℓ of length p corresponds to an aperiodic necklace of length p, of which there are Mσ(p), we arrive at
the result: ∑

W∈Σℓ

α(W ) ≥
∑
x∈Cℓ

⌈
s · |x|
w

⌉
=
∑
p|ℓ

Mσ(p)
⌈sp
w

⌉
.

The multi-local schemes also require that we generalize our definition of a charged context. As a
multi-local scheme can select multiple new k-mers in a single window, we change our binary notion of
a charged context to a mapping of weights to contexts, where a context W has weight α(W ) if α(W )
previously unsampled positions are selected in the final window of length w + k − 1 in W . Similar to
local schemes, a multi-local scheme’s necessary context is the current window of w k-mers as well as
the previous w − 1 windows, leading to a context size of 2w + k − 2.

Lemma 10. If f is a (s, w, k)-multi-local scheme and α : Σ2w+k−2 → [s + 1] is the corresponding
mapping of weights to contexts, defined as α(W ) = |A \ B|, where A consists of all positions in the
context selected by the final window and B consists of all positions in the context selected in all previous
windows, i.e.

A = {j + (w − 1) | j ∈ f(W [w − 1, 2w + k − 2))}

B =

 ⋃
0≤i≤w−2

{j + i | j ∈ f(W [i, i+ w + k − 1))}

 ,
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then α is a (s, w, 2w + k − 2)-multi-UHS.

Proof. Our proof follows a similar structure to that of Lemma 5. Let us show that the total weight
of any path of length w in B2w+k−2 is at least s. Let a sequence of w consecutive contexts of length
2w + k − 2 be given as (W0, . . . ,Ww−1). Take S to be the sequence of length 3w + k − 3 such that
S[i, 2w + k − 2 + i) = Wi. Then we have that f on the last (w + k − 1)-mer of Ww−1 (which is
S[2w − 2, 3w + k − 3)) selects s distinct indices i1, i2, . . . , is in S where for each 1 ≤ p ≤ s we have
ip ≥ 2w−2. Suppose n of these indices are selected by f on any previous (w+k−1)-mer of S, indexed
iq1 , . . . , iqn , while the other s − n ip are not (meaning α(Ww−1) = s − n). Clearly, if n = 0, we are
done. Therefore, assume instead n > 0.

Recall that for all 1 ≤ j ≤ n, iqj ≥ 2w− 2. Since 0 ≤ f(·) ≤ w− 1, we have that for each j, the first
(w+k−1)-mer S[mj ,mj +w+k−1) in S such that f picks the index iqj satisfies w−1 ≤ mj ≤ 2w−2.
Then for each j, the choice of mj yields that Wmj−w+1 selects a new location iqj when f is applied to
its last (w + k − 1)-mer. This means that

∑
l∈[w−1]

α(Wl) ≥ n, since the sum accounts for every context

of the form Wmj−w+1, and hence every chosen index iq1 , . . . , iqn . As α(Ww−1) = s− n, we have that
the sum of the weights of the w contexts W0, . . . ,Ww−1 is at least s.

Tying these results together using the same line of reasoning as we did in the main text for local
schemes, we arrive at a lower bound for multi-local schemes:

Corollary 11. If f is a (s, w, k)-multi-local scheme, then

d(f) ≥ 1

σ2w+k−2

∑
p|2w+k−2

Mσ(p)
⌈sp
w

⌉
.

Let us consider the use case of multi-local schemes described earlier, i.e., where the requirement
is to have s k-mers sampled from every sw k-mers. We showed in the main text that this can be
accomplished by a (w, k)-forward scheme with density at least gσ(w, k), or a (w, k)-local scheme with
density at least gσ(w,w+k−2). With our new bound, we can see that the requirement can be achieved
with a (s, sw, k)-multi-local scheme with density at least gσ(w, k + (2s− 1)w − 2). In other words, the
lower bound for local schemes is the same pattern as the forward bound, but “shifted left" by w − 2,
and the bound for multi-local is the same as the local bound, but again shifted left by (2s− 2)w.

B An alternative form of gσ(w, k)

When all divisors of ℓ apart from 1 have the same remainder modulo w, we can simplify gσ(w, k).

Corollary 12. Let Nσ(ℓ) denote the number of cycles in the pure cycle partitioning of Bℓ. Let w, ℓ
be a pair of integers such that w does not divide ℓ and for all divisors d | ℓ excluding the unit divisor 1,
d ≡ z (mod w). Then for any (w, ℓ)-UHS U , |U | ≥ σℓ+Nσ(ℓ)(w−z)+σ(z−1)

w .

Proof. There are σ singleton cycles in a De Bruijn graph on an alphabet of σ characters, and each of these
must be included in any hitting set U . For all remaining cycles, we have that ⌈|c|/w⌉ = (|c|+ w − z)/w.

15



|U | ≥
∑
c∈Cℓ

⌈
|c|
w

⌉

= σ +

(∑
c∈Cℓ

|c|+ w − z

w

)
− σ

1 + w − z

w

= σ

(
1− w − z + 1

w

)
+
∑
c∈Cℓ

|c|
w

+
∑
c∈Cℓ

w − z

w

= σ

(
z − 1

w

)
+

σℓ

w
+Nσ(ℓ)

w − z

w

=
σℓ +Nσ(ℓ)(w − z) + σ(z − 1)

w
.

While the formula in Corollary 12 still includes a summation over divisors due to its use of Nσ, it
no longer involves any ceiling calculations. Furthermore, it shows that gσ(w, k) can be written as the
following when w and k satisfy the constraints of Corollary 12

gσ(w, k) =
1

w
+

Nσ(w + k)(w − z) + σ(z − 1)

wσw+k
.

This form, compared to the general form of gσ(w, k), provides a more interpretable characterization of
the gap between gσ and 1

w .

C ILP Model

Forward ILP definition. We used Gurobi (Gurobi Optimization, LLC, 2024) to implement
our ILP. While the basic model described below is sufficient, we made multiple improvements which
enabled identifying solutions for larger σ,w and k. We use xu to model f(u), i.e. the index of the
k-mer selected in the window u ∈ Σw+k−1. The yu,v variables represent the charge of a context of two
adjacent windows u and v.

Given a De Bruijn graph Bw+k−1 = (V,E), the windows correspond to the vertices of the graph,
and the contexts correspond to the edges. An edge (u, v) is not charged if xu = xv + 1. For a forward
scheme, xu ≤ xv +1 for every edge (u, v). Therefore, we can define an ILP which minimizes the density
of a (w, k)-forward scheme as follows:

minimize
∑

(u,v)∈E

y(u,v)

such that
xu ∈ [w] ∀u ∈ V,

y(u,v) ∈ {0, 1} ∀(u, v) ∈ E,

xu ≤ xv + 1 ∀(u, v) ∈ E,

y(u,v) = 0 =⇒ xu = xv + 1 ∀(u, v) ∈ E.

Local ILP definition. While we could define an ILP for local schemes similarly, the resulting
model is inefficient due to the reliance on intermediate variables. Instead, we leverage the fact that the
expected density on a random string (Marçais et al., 2017) is the same as the density of a (w, k)-local
scheme on a circular De Bruijn sequence of order 2w + k − 2.

Let S be circular De Bruijn sequence of order 2w + k − 2, i.e. S is a circular sequence of length
L = σ2w+k−2 which contains every (2w+ k− 2)-mer exactly once. As S is circular, we note that when
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i > j, the substring S[i..j) corresponds to S[i..L)S[0..j), We use xW to represent the value of f(W )
and yi to be a binary variable which corresponds to whether or not position i was sampled. We define
an ILP which minimizes the density of a (w, k)-local scheme as follows:

minimize
∑
i∈[L]

yi

such that

xW ∈ [w] ∀W ∈ Σw+k−1,

yi ∈ {0, 1} ∀i ∈ [L],

xS[i,(i+w+k−1) mod L)=j =⇒ y(i+j) mod L=1 ∀i∈[L], j∈[w].

Improvements to the base forward ILP. First, we added the additional constraint that each
pure cycle c in Bw+k must have at least ⌈|c|/w⌉ nodes which correspond to charged edges in Bw+k−1.
This additional constraint helps substantially when k ≡ 1 (mod w). In cases where k ̸≡ 1 (mod w),
we add corresponding constraints for a subset of simple cycles in Bw+k that correspond to pure cycles
in higher or lower order De Bruijn graphs. While this process adds many more constraints to the
model, it narrows the search space substantially and also increases the objective of the ILP linear
relaxation, leading to a smaller (and sometimes nonexistent) integrality gap.

As adding this constraint requires the model to have variables representing the charge of a context,
it was more efficient to directly use the context charges as the objective variable as opposed to using
selected positions in a De Bruijn sequence (as we do in the local ILP). For the local ILP, the gσ bound
is relatively loose and therefore the aforementioned cycle constraints do not help much. Furthermore,
modeling context charges requires more intermediate variables in the local ILP, hence we directly used
sampled positions in a De Bruijn sequence as the objective for the local ILP.

If gσ(w, k) is tight for some σ,w, k, then the objective value of the linear relaxation of the ILP is
the same as the integer objective value. As a result, the objective bound is fixed from the start. We
leveraged this fact by telling the optimizer to focus on identifying integral solutions as opposed to
decreasing the gap between the objective bound and objective value in cases where we suspect that
gσ(w, k) is tight. This was done through the heuristics parameter.

Finally, we used previously computed solutions to provide starting points for the ILP optimization.
Let f be a (w, k)-local scheme. We constructed a (w+1, k)-local scheme or a (w, k+1)-local scheme f ′

through ignoring the last character in an input window W of length w+k, i.e. f ′(W ) = f(W [0, w+k)).
This is similar to the “naive extensions” described in Marçais et al. (2018). If we had a minimum
density (w − 1, k)-forward scheme or a (w, k − 1)-forward scheme, we seeded the optimizer with the
“extended" sampling function which corresponded to whichever one of the precursors schemes yielded
the lower density.

We ran our ILP model on a server with 128 threads and 128GB of RAM on all combinations of
2 ≤ w ≤ 12, 1 ≤ k ≤ 12, and 2 ≤ σ ≤ 4. For each set of parameters, we limited the runtime to 12
hours. The ILP identified optimal forward schemes for 60 different sets of parameter and optimal local
schemes for 11 different sets of parameters.

D Additional figures

See Fig. 4 and Table 2.
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Figure 4: Comparison of existing schemes to lower bounds. Densities were calculated by applying
each scheme to a random sequence of 10 million characters and are plotted as solid dotted lines. The
mod-minimizer uses parameter r = 6 for σ = 2, r = 4 for σ = 4, and r = 1 for σ = 256. Miniception
uses parameter max(r, k − w). Lower bounds are plotted as solid lines.
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Table 2: Our g′σ(w, k) lower bound on the density of forward schemes, and minimum densities of forward and local obtained
by the ILPs described in Supplement C. Entries with an equals sign (=) correspond to parameters where the minimum density
is equal to the preceding column. Entries with the less-than-or-equal-to sign (≤) correspond to parameters where the local
ILP identified a solution with lower density than the optimal forward scheme but timed out before determining whether
the identified solution was optimal. Bold entries indicate cases where the local scheme is better than the g′(w, k) bound for
forward schemes. For w = 2, all local schemes are forward by definition and therefore the minimum (2, k)-local scheme density
is equal to the minimum (2, k)-forward scheme density. Empty cells correspond to parameters where the local ILP timed out
before it was able identify a local scheme with lower density than the optimal forward scheme or prove that no such scheme
exists. In these cases, it is unknown whether or not there exists a local scheme with lower density than the optimal forward
scheme.

(a) σ = 2

w, k
g′σ(w, k) Minimum d(f)

Fwd. bound Forward Local

2, 1 0.750 3/4 = =
2, 2 0.625 5/8 = =
2, 3 0.625 5/8 = =
2, 4 0.578 37/64 = =
2, 5 0.578 37/64 = =
2, 6 0.559 143/256 = =
2, 7 0.559 143/256 = =
2, 8 0.546 559/1024 = =
2, 9 0.546 559/1024 = =
2, 10 0.539 1103/2048 = =
2, 11 0.539 1103/2048 = =

3, 1 0.562 9/16 = =
3, 2 0.438 7/16 0.469 15/32 =
3, 3 0.438 7/16 0.453 29/64 =
3, 4 0.438 7/16 = =
3, 5 0.401 411/1024 0.406 13/32 =
3, 6 0.401 411/1024 0.402 103/256
3, 7 0.401 411/1024 =
3, 8 0.385 197/512 0.386 395/1024
3, 9 0.385 197/512 0.385 1577/4096
3, 10 0.385 197/512 =

4, 1 0.438 7/16 = =
4, 2 0.359 23/64 0.375 3/8 0.371 95/256
4, 3 0.336 43/128 0.352 45/128 =
4, 4 0.336 43/128 0.340 87/256
4, 5 0.336 43/128 = ≤ 0.335 687/2048
4, 9 0.308 1261/4096 = ≤ 0.308 10087/32768

5, 1 0.359 23/64 = 0.355 91/256
5, 2 0.297 19/64 0.305 39/128 =
5, 6 0.273 35/128 = ≤ 0.273 2239/8192

6, 1 0.297 19/64 =
6, 2 0.258 33/128 0.262 67/256 ≤ 0.261 267/1024

7, 1 0.258 33/128 = ≤ 0.257 263/1024

8, 1 0.227 29/128 =

9, 1 0.202 207/1024 =

10, 1 0.183 187/1024 =

11, 1 0.168 687/4096 =

12, 1 0.154 631/4096 =

(b) σ = 3

w, k
g′σ(w, k) Minimum d(f)

Fwd. bound Forward Local

2, 1 0.704 19/27 = =
2, 2 0.605 49/81 0.630 17/27 =
2, 3 0.605 49/81 = =
2, 4 0.572 139/243 0.578 421/729 =
2, 5 0.572 139/243 = =
2, 7 0.556 10939/19683 = =

3, 1 0.519 14/27 = =
3, 2 0.429 313/729 0.457 37/81
3, 4 0.429 313/729 = ≤ 0.428 2810/6561

4, 1 0.407 11/27 =

5, 1 0.337 82/243 =

6, 1 0.287 209/729 =

7, 1 0.251 548/2187 =

8, 1 0.222 4379/19683 =

(c) σ = 4

w, k
g′σ(w, k) Minimum d(f)

Fwd. bound Forward Local

2, 1 0.688 11/16 = =
2, 2 0.602 77/128 0.621 159/256 =
2, 3 0.602 77/128 = =
2, 5 0.572 2341/4096 = =

3, 1 0.508 65/128 =

4, 1 0.402 103/256 =

5, 1 0.334 685/2048 =

6, 1 0.286 1171/4096 =
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