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Abstract
Motivation: Sampling k-mers is a ubiquitous task in sequence analysis algorithms. Sampling schemes such as the often-used random mini
mizer scheme are particularly appealing as they guarantee at least one k-mer is selected out of every w consecutive k-mers. Sampling fewer 
k-mers often leads to an increase in efficiency of downstream methods. Thus, developing schemes that have low density, i.e. have a small pro
portion of sampled k-mers, is an active area of research. After over a decade of consistent efforts in both decreasing the density of practical 
schemes and increasing the lower bound on the best possible density, there is still a large gap between the two.
Results: We prove a near-tight lower bound on the density of forward sampling schemes, a class of schemes that generalizes minimizer 
schemes. For small w and k, we observe that our bound is tight when k � 1ðmod wÞ. For large w and k, the bound can be approximated by 

1
wþk d

w þk
w e. Importantly, our lower bound implies that existing schemes are much closer to achieving optimal density than previously known. 

For example, with the current default minimap2 HiFi settings w¼19 and k¼19, we show that the best known scheme for these parameters, 
the double decycling-set-based minimizer of Pellow et al. is at most 3% denser than optimal, compared to the previous gap of at most 50%. 
Furthermore, when k � 1ðmod wÞ and the alphabet size σ goes to 1, we show that mod-minimizers introduced by Groot Koerkamp and Pibiri 
achieve optimal density matching our lower bound.
Availability and implementation: Minimizer implementations: github.com/RagnarGrootKoerkamp/minimizers ILP and analysis: github.com/ 
treangenlab/sampling-scheme-analysis.

1 Introduction
For over a decade, k-mer sampling schemes have served as a 
ubiquitous first step in many classes of bioinformatics tasks. 
By sampling k-mers in a way which ensures that two similar 
sequences will have similar sets of sampled k-mers, sampling 
schemes enable methods to bypass the need to compare entire 
sequences at the base level and instead allow them to work 
more efficiently using the sampled k-mers.

Local sampling schemes satisfy a window guarantee that at 
least one k-mer is selected out of every window of w consecu
tive k-mers. Most schemes used in practice, such as the ran
dom minimizer scheme (Schleimer et al. 2003, Roberts et al. 
2004), are forward schemes that additionally guarantee that 
k-mers are sampled in the order in which they appear in the 
original sequence. These properties are particularly appealing 
since they guarantee that no region is left unsampled.

As the purpose of these schemes is to reduce the computa
tional burden of downstream methods while upholding the 
window guarantee, the primary goal of most new schemes is 
to minimize the density, i.e. the expected proportion of sam
pled k-mers. Over the past decade, many new schemes have 

been proposed that obtain significantly lower densities than 
the original random minimizer scheme.

For example, there are schemes based on hitting sets 
(Orenstein et al. 2016, Marçais et al. 2017, 2018, DeBlasio 
et al. 2019, Ekim et al. 2020, Pellow et al. 2023, Golan et al. 
2024), schemes that focus on sampling positions rather than 
k-mers (Loukides and Pissis 2021, Loukides et al. 2023), 
schemes that use an ordering on t-mers (t<k) to decide 
which k-mer to sample (Zheng et al. 2020, Groot Koerkamp 
and Pibiri 2024), and schemes that aim to minimize density 
on specific input sequences (Zheng et al. 2021b, Hoang et al. 
2022). All of these improvements notwithstanding, it is still 
unknown how close these schemes are to achieving mini
mum density.

A trivial lower bound on density given by the window 
guarantee is 1

w, and recently Groot Koerkamp and Pibiri 
(2024) improved the bound of Marçais et al. (2018) from 
1:5þ 1

2w
wþk to 1:5

wþk− 0:5. However, for many practical values of w 
and k, there is a sizeable gap between these lower bounds and 
the density of existing schemes. This raises the question 
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whether schemes with density much closer to 1
w exist, but 

have not been found yet, or whether existing schemes are al
ready very close to optimal and it is the lower bound that 
needs improvement. Our new lower bound closes most of the 
gap, and thus answers this question: Indeed, especially for 
k≥w, the best existing schemes have near-optimal density in 
many cases. This allows future research to focus on improv
ing other sampling scheme metrics, such as the conservation 
described by Edgar (2021) and Shaw and Yu (2022).

1.1 Contributions
Main lower bound theorem. We prove a novel lower bound 
on the density of forward schemes that is strictly tighter than 
all previously established lower bounds for all w, k, and al
phabet size σ:

Theorem 1. Let f be a (w, k)-forward sampling scheme 
and MσðpÞ count the number of aperiodic necklaces of 
length p over an alphabet of size σ. Then, the density 
of f is at least 

gσðw; kÞ :¼
1

σwþk

X

pjðwþ kÞ

MσðpÞ
l p

w

m
≥
dwþ k

w e

wþk
≥

1
w
; (1) 

where the middle inequality is strict for w>1.   

We prove that this bound can be extended to work for more 
general classes of sampling schemes, such as the local schemes 
described by Marçais et al. (2018) and the multi-local 
schemes described by Kille et al. (2023).

Comparison with optimal schemes for small parameters. 
We show that our lower bound is tight for some small w, k, 
and σ by using an integer linear program to construct 
schemes whose density matches our lower bound. This marks 
the first time that there is an analytical description of a tight 
minimum density of any forward scheme. We conjecture that 
when k� 1ðmod wÞ, there exist schemes with density match
ing our lower bound.

Comparison with practical schemes for large parameters. 
To show that our bound is significantly closer to the density 
achieved by existing schemes compared to previous lower 
bounds, we replicate the benchmark from Groot Koerkamp 
and Pibiri (2024) for a selection of w and k (Fig. 3). For ex
ample, with the default minimap2 (Li 2018) HiFi settings 
w¼19 and k¼19, the lower bound goes up from 50% of 
the density achieved by the double decycling based method to 
97% of the achieved density (Table 1).

Analysis of the mod-minimizer. Finally, our new lower 
bound implies that the mod-minimizer scheme (Groot 

Koerkamp and Pibiri 2024) is optimal when k� 1ðmod wÞ
and σ is large. Indeed, for the ASCII alphabet (σ¼256), the 
mod-minimizer scheme density is consistently within 1% of 
the lower bound when k� 1ðmod wÞ (Supplementary D, 
Fig. S4).

2 Background
Notation. We begin by defining some necessary notation, as 
well as definitions of mathematical concepts that will be used 
throughout the work. We use ½n� to refer to the set 
f0;1; . . . ;n −1g. The alphabet is denoted by Σ and has size 
σ :¼ jΣj, with σ¼4 for DNA. The expression ajb indicates 
that a divides b. The summation 

P
ajb is over all positive divi

sors a of b. We use a mod m for the remainder (in ½m�) of a 
after dividing by m and we use a� b ðmod mÞ to indicate 
that a and b have the same remainder modulo m. Given a 
string W, W½i; jÞ) refers to the substring of W containing the 
characters at 0-based positions i up to j − 1 inclusive. For 
two strings X and Y, XY represents the concatenation of X 
and Y.

Classes of sampling schemes. There are multiple estab
lished classes of sampling schemes. We begin by drawing a 
distinction between schemes with and without a window 
guarantee that guarantees that at least one every w k-mers is 
sampled. While schemes without a window guarantee, such 
as fracminhash (Irber et al. 2022), are often efficient to com
pute, the lack of a guarantee on the distance between sampled 
k-mers makes them ineffective or inefficient for certain tasks 
such as indexing and alignment. Indeed, we only consider 
schemes with a window guarantee:

Definition 1. A (w, k)-local scheme with window 
guarantee w and k-mer size k on an alphabet Σ 
corresponds to a sampling function f : Σwþk − 1 ! ½w�.   

In other words, given a window of wþk −1 characters (w 
consecutive k-mers), the output of the sampling function f 
(W) is an integer in ½w� which represents the index of the sam
pled k-mer in W. Recently, Kille et al. (2023) proposed a gen
eralization of (w, k)-local schemes which samples at least s 
k-mers out of every w instead of at least 1 and we extend our 
results to these more general schemes in Supplementary A.

Local schemes have no restrictions on which of the w k- 
mers can be selected for each window, but forward schemes 
are a subset of local schemes that enforce the restriction that 
they never select a k-mer which occurs before a previously se
lected k-mer.

Table 1. Minimum densities achieved by existing sampling schemes for default parameters of frequently-used bioinformatics methods (σ¼ 4)a

Application (w, k) Random Best Lower bound Gap (%)

2=ðwþ1Þ Scheme Density 1=w g0 1=w g0

Kraken2 (5, 31) 0.333 Mod-mini 0.226 0.200 0.222 12.8 1.6
SSHash (12, 20) 0.154 Mod-mini 0.120 0.083 0.108 43.9 10.9
minimap2, hifi (19, 19) 0.100 dbl decycling 0.079 0.053 0.077 50.1 2.7

a The gap percentage describes the how much larger the lowest achieved density is than the lower bound and is calculated as 100 � dðf Þ−LBðw;kÞ
LBðw;kÞ , where 

LBðw;kÞ ¼ 1
w for the old gap and LBðw;kÞ ¼ g

0

4ðw;kÞ for the new gap. While Groot Koerkamp and Pibiri (2024) showed that 1:5
wþk− 0:5 is also a lower bound, 

1
w is tighter for all of the parameter choices in the table. For SSHash (Pibiri 2022), we show parameters used for indexing a single human genome.
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Definition 2. A (w, k)-local scheme is also (w, k)-forward 
if for all strings W 2 Σwþk representing two adjacent 
windows,  

f ðW½0;wþk − 1ÞÞ≤ f ðW½1;wþkÞÞþ1:

Definition 3. The density dðf Þ of a sampling scheme f is 
defined as the expected proportion of sampled 
positions from an infinite, uniformly random string.   

For a further background on types of sampling schemes, 
we refer to Shaw and Yu (2022), Zheng et al. (2023), Groot 
Koerkamp and Pibiri (2024), and Ndiaye et al. (2024).

De Bruijn graphs. Let Bn;σ ¼ ðV;EÞ denote the complete De 
Bruijn graph of order n, which has as vertices all strings of 
length n, V ¼ Σn, and edges between vertices that overlap in n 
− 1 positions, E¼ fðX;X½1;nÞcÞjX 2 V; c 2 Σg. When σ is 
clear from the context or irrelevant for a particular discus
sion, it is omitted. It is worth noting that the vertices of Bnþ1 

correspond to edges of Bn.
For each string s of length n, the n rotations of s induce a 

pure cycle in Bn consisting of (up to) n vertices cyclically con
nected by edges. Note that when s is repetitive, e.g. a single 
repeated character or some other repeated string, the length 
of the cycle will be a divisor of n. These pure cycles are also 
called necklaces. The set of necklaces of length n corresponds 
to a partitioning of the vertices of Bn into a vertex-disjoint set 
of pure cycles. We use Cn to refer to this set of pure cycles of 
Bn, and for c 2 Cn, we write jcj for the number of vertices in 
the cycle.

When a string of length n has n unique rotations, the corre
sponding necklace is said to be aperiodic. The total number 
of necklaces and the number of aperiodic necklaces of length 
n are given by Moreau (1872) (and see also Riordan (1957)) 
as, respectively, 

NσðnÞ ¼
1
n

X

pjn

φðn=pÞ � σp; MσðnÞ ¼
1
n

X

pjn

μðn=pÞ � σp;

where φðpÞ is Euler’s totient function that counts the number 
of integers in ½p� coprime to p. The formula MσðnÞ counting 
aperiodic necklaces follows from the formula for NσðnÞ via 
M€obius inversion (M€obius 1832), where μ is the M€obius 
function defined to be 0 if n is divisible by a square (>1) and 
μðnÞ ¼ ð−1Þq otherwise, where q is the number of prime fac
tors of n.

Charged contexts. The context of a window of length 
wþk − 1 in a sequence is the set of preceding windows that 
influences whether the current window samples a 
new position.

For a local scheme to select a new position, none of the pre
vious w − 1 windows may have selected the same k-mer as 
the current window. As a result, the context for local schemes 
consists of 2wþk − 2 characters: the current window of w k- 
mers as well as the w − 1 windows preceding the cur
rent window.

For a forward scheme, however, as soon as a window sam
ples a different position than the preceding window, this posi
tion must be a new position. Thus, one needs only to 
consider the context of two consecutive windows of w k- 
mers, for a total of wþ k characters.

When a sampling scheme selects a new position for the last 
window in a context, the context is charged. Marçais et al. 
(2017) showed that the density of a scheme f can be defined 
as the proportion of contexts which are charged. In the case 
of forward schemes, each edge in Bwþk− 1 represents a con
text, and the charged contexts are the edges (u, v) for 
which f ðuÞ 6¼ f ðvÞþ1.

Universal hitting sets. In 2021, Zheng et al. (2021a) related 
the density of forward and local schemes to the concept of 
universal hitting sets (UHS). A ðw; ‘Þ-UHS is defined as a set 
of ‘-mers U such that any sequence of w adjacent ‘-mers 
must contain at least one ‘-mer from U. Theorem 1 of Zheng 
et al. (2021a) showed that when k¼1, one can use the mini
mum size of a ðw; ‘¼wþkÞ-UHS to bound the density of 
ðw;k¼ 1Þ-forward schemes, and the minimum size of a 
ðw; ‘¼ 2wþk −2Þ-UHS to bound the density of a 
ðw;k¼ 1Þ-local scheme.

3 Theoretical results
In this section, we prove our main result: an improved lower 
bound on the density of forward sampling schemes. We first 
generalize some existing theorems to arbitrary w and k 
(Sections 3.1 and 3.2), after which our main theorem follows 
in Section 3.3.

3.1 A lower bound on the size of a ðw ;‘Þ-UHS
We begin by considering a ðw¼ 2; ‘Þ-UHS. A ð2; ‘Þ-UHS is 
equivalent to a vertex cover in B‘, i.e., a subset of vertices 
such that each edge in B‘ is adjacent to at least one vertex in 
the subset. Lichiardopol (2006) used the fact that for every 
cycle C, at least djCj=2e of its vertices must be in a vertex 
cover, and obtained a lower bound on the size of a vertex 
cover by partitioning B‘ into its pure cycles. We naturally ex
tend this argument to obtain a lower bound on the cardinal
ity of a ðw; ‘Þ-UHS for any w≥2.

Proposition 4. Let MσðpÞ count the number of aperiodic 
necklaces of length p. For any ðw; ‘Þ-UHS U, 

jUj≥
X

pj‘

MσðpÞ
l p

w

m
:

Proof. The pure cycles of C‘ partition the vertices of 
B‘. For any simple cycle of size p in B‘, a ðw; ‘Þ-UHS 
must contain at least dp=we‘-mers. As there is a one- 
to-one correspondence between the pure cycles of 
length pj‘ in B‘ and the MσðpÞ aperiodic necklaces of 
length p, we have 

jUj≥
X

c2C‘

&
jcj
w

’

¼
X

pj‘

MσðpÞ
l p

w

m
:

w

Figure 1b provides a depiction of a minimum (2, 4)-UHS as 
well as the pure-cycle partitioning of B4 on a binary alphabet. 
Notably, the pure cycle ð0011;0110;1100;1001Þ has three 
vertices in the UHS, even though the lower bound given by 
Proposition 4 only requires it have 2. This is an example 
where the lower bound is not tight.
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For certain values of w and ‘, such as when ‘ is prime or 
w¼2 and ‘ is odd, Proposition 4 can be simplified to remove 
the summation and ceil function (Supplementary B).

Proposition 4 is the core of the proof of Theorem 1 and al
ready has the right structure. The remainder of this section 
translates this result on universal hitting sets to a result on 
the density of sampling schemes.

3.2 A connection between sampling scheme density 
and UHS size
Zheng et al. (2021a, Theorem 1) showed a connection be
tween universal hitting sets and the density of sampling 
schemes when k¼1. We naturally extend their result to k≥1 
for both local schemes (Lemma 5) and forward schemes 
(Corollary 6).

Lemma 5. Let f be a (w, k)-local scheme, and let Cf be its 
corresponding set of charged contexts defined as the 
set of strings W of length 2wþk − 2 for which the last 
window W½w − 1;2wþk − 2Þ selects a position 
w − 1þ f ðW½w −1;2wþk −1ÞÞ not selected by any 
previous window: 

Cf :¼ fW 2 Σ2wþk − 2j80≤ i≤w − 2;
f ðW½w − 1; 2wþ k − 2ÞÞþ ðw − 1Þ 6¼ f ðW½i; iþwþk − 1ÞÞþ ig:

Then, Cf is a ðw;2wþk −2Þ-UHS.
Proof. For the sake of a contradiction, suppose there is a 

walk of length w in the De Bruijn graph of order 
ð2wþk − 2Þ, say ðW0; . . . ;Ww− 1Þ, that avoids cf Let S be the 
spelling of the walk, i.e., the sequence of length 3wþk − 3 
such that S½i; iþ2wþk −2Þ ¼Wi. Since Ww − 1 62 Cf and S 
contains Ww− 1, this implies that on the last ðwþk −1Þ-mer 
of Ww − 1 (i.e. S½2w −2; 3wþk − 3Þ), f selects an index 
j≥2w−2 in S which has already been picked.

Since 0≤ f ð�Þ≤w −1 and j≥2w −2, the first window that 
selects position j must begin at an index m≥w − 1. Therefore, 
the context Wm − wþ1 ¼ S½m− ðw −1Þ;mþwþk −1Þ is 
charged, as f selects a previously unselected position when ap
plied to its last ðwþk − 1Þ-mer. By definition, Wm − wþ1 2 Cf , 
contradicting our supposition and therefore Cf is a 
ðw;2wþk − 2Þ-UHS.                                                                   w

Identically, one can consider contexts for a (w, k)-forward 
scheme f, which requires only verifying that the selection for 
a window of length wþk −1 is distinct from the selection for 
the previous window. Therefore, the length of a context for 
forward f is only wþk. As above, every w contexts must 
have at least one charged context, leading to the follow
ing conclusion:

Corollary 6. If f is a (w, k)-forward scheme and Cf is its 
corresponding set of charged contexts, defined as 
Cf ¼ fW 2 Σwþk j f ðW½0;wþk −1ÞÞ 6¼ f ðW½1;wþkÞÞ
þ1g, then Cf is a ðw;wþkÞ-UHS.   

As all contexts of a particular length ‘ are equally likely to oc
cur in an infinite, uniform random string, the proportion of 
charged contexts corresponds to the density of the sampling 
scheme (Marçais et al. 2017), i.e. dðf Þ ¼ jCf j=σ‘, where ‘¼
wþk for forward schemes and ‘¼ 2wþk − 2 for local 
schemes. An example of the charged contexts of a (2, 2)- 

forward scheme and the corresponding UHS is depicted 
in Fig. 1.

3.3 Lower bounds on local and forward 
scheme density
We are now ready to state and prove our main theorem.

Theorem 1. Let f be a (w, k)-forward sampling scheme 
and MσðpÞ count the number of aperiodic necklaces of 
length p over an alphabet of size σ. Then, the density 
of f is at least 

gσðw;kÞ :¼
1

σwþ k

X

pjðwþkÞ

MσðpÞ
l p

w

m
≥
dwþk

w e

wþ k
≥

1
w
; (1) 

where the middle inequality is strict for w> 1.   

Proof. Due to Corollary 6 and Marçais et al. (2017), we can 
see that a (w, k)-forward sampling scheme of density dðf Þ
implies a ðw; ‘¼wþkÞ-UHS of size σwþk � dðf Þ. By 
Proposition 4, this implies that every forward sampling 
scheme has a density of at least gσðw;kÞ, and hence 
dðf Þ≥gσðw;kÞ follows.

For any p that divides wþk, we havedp
we≥

p
wþk d

wþk
w e, 

with strict inequality when p¼1 and w>1. Substituting 
this in gσðw;kÞ, the middle inequality follows directly using 
the identity 

P
pjwþk p �MσðpÞ ¼ σwþk that counts the num

ber of strings of length wþk partitioned by their short
est period.

Figure 1. (a) A De Bruijn graph B3 corresponding to a minimum density 
ðw ¼ 2;k ¼ 2Þ-forward scheme. The underlined characters in each vertex 
represent the 2-mer that is selected for that window. The solid edges 
represent the charged contexts and the edge colors represent the pure 
cycles in B4 (not in B3 itself). For characters ci, each edge 
ðc0c1c2;c00c01c02Þ in B3 corresponds to the vertex c0c1c2c02 in B4. (b) The 
corresponding ðw ¼ 2; ‘¼ 4Þ-UHS in B4. The vertices are partitioned by 
color, representing the pure-cycles. The 2-mer(s) selected in each context 
are underlined. The vertices with a double border represent the charged 
edges in B3 in (a) and the corresponding (2, 4)-UHS. Each pure cycle c has 
at least djcj=we vertices in the UHS.
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The last inequality follows directly from 
1

wþkd
wþk

w e≥
1

wþk
wþk

w ¼ 1=w.                                                       w

As shown in Section 4, gσðw;kÞ is a tight bound for 
many small cases. Since its formula is somewhat un
wieldy, 1

wþk d
wþk

w e can be used as an approximation that 
quickly approaches gσðw;kÞ (Fig. 2). Simple arithmetic 
shows that both gσðw;kÞ and 1

wþk d
wþk

w e improve the pre
vious lower bound of 1:5

wþk − 0:5 of Groot Koerkamp and 
Pibiri (2024).

Given a (w, k)-local scheme fk, we can construct a 
ðw;k0≥kÞ-local scheme fk0 of the same density by ignor
ing the last k0−k characters in each window, i.e. 
fk0 ðWÞ ¼ fkðW½0 . . . ðwþkÞÞ. This directly implies dðfkÞ ¼

dðfk0 Þ (Zheng et al. 2021a). It follows that the minimum 
density of a (w, k)-local or forward scheme is monotoni
cally decreasing as k increases. However, as can be seen 
in Fig. 2, gσðw;kÞ is not a monotonically decreasing 
function. The local maxima appear to be at 
k� 1 ðmod wÞ, which motivates the following improved 
lower bound.

Theorem 2. For any (w, k)-forward scheme f, an improved 
lower bound g0 is given by 

dðf Þ≥ g0σðw; kÞ :¼ maxðgσðw;kÞ; gσðw;k0ÞÞ

≥max
1

wþk

lwþk
w

m
;

1
wþ k0

lwþk0

w

m� �

;

where k0 is the smallest integer ≥k such that 
k0 � 1 ðmod wÞ.    

Remark 7. Similar to Theorem 1, Lemma 5 implies that 
any (w, k)-local scheme f has density at least 
dðf Þ≥gσðw;wþk − 2Þ. As this bound is in terms of gσ, 
the improved bound in Theorem 2 can be applied to 
local schemes as well, i.e., for any (w, k)-local scheme 
f, an improved lower bound is given by 

dðf Þ≥ g0σðw;wþ k − 2Þ:

4 Empirical tightness of our bounds
Here, we compare our bounds gσ and g0σ to existing lower 
bounds. Further, we show how tight these bounds are for 
small w, k, and σ by searching for optimal schemes via an in
teger linear programming (ILP) formulation. We also show 
how close existing sampling scheme densities are to g

0

σ for 
practical choices of w, k, and σ. Finally, we show when the 
recently described mod-minimizer scheme (Groot Koerkamp 
and Pibiri 2024) achieves optimal density as σ ! 1.

ILP description. We use an ILP to search for minimum 
density forward sampling schemes. In short, we use a single 
integer variable xW 2 ½w� for every window W of length 
wþk −1 (corresponding to a vertex in Bwþk− 1) that indi
cates the position of the chosen k-mer, and a single boolean 
variable yðW;W0Þ for each edge in Bwþk− 1 that indicates 
whether the corresponding context is charged. On each edge, 
we require that the scheme be forward. The objective func
tion is to minimize the number of charged edges. To reduce 
the search space, we add an additional constraint correspond
ing to our lower bound gσ by requiring that for each pure 

Figure 2. Comparison of forward scheme lower bounds and optimal densities for small w, k, and σ. Optimal densities were obtained via the ILP and are 
plotted as black circles that are solid when the optimal density matches our lower bound, g0σ , and hollow otherwise. Each column corresponds to a 
parameter being fixed to the lowest non-trivial value, i.e., σ¼2 in the first column, w¼2 in the second column, and k¼1 in the third column. Note that 
the x-axis in the third column corresponds to w, not k.
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cycle of length jcj in Bwþk, at least djcj=we of the correspond
ing edges in Bwþk− 1 are charged. Further details, including 
the ILP formulation for local schemes, can be found in 
Supplementary C.

Comparison against optimal schemes for small k. We used 
Gurobi (Gurobi Optimization, LLC 2024) to solve the ILP 
for all combinations of w, k, and σ such that 
1≤w≤12; 1≤k≤12, and 2≤σ≤4 for both forward and lo
cal schemes and limited the runtime for each instance to 12h 
on 128 threads. All results are reported in in Supplementary 
D, Table S2. While the additional constraint on pure cycles 
corresponding to gσ significantly sped up the search, for most 
large w, k, and σ, the ILP failed to terminate with an optimal 
solution in the allotted time. As a result, we restrict most of 
our analysis to the following three cases: fixed alphabet size σ 
¼ 2, fixed window size w¼2, and fixed k-mer size 
k¼1 (Fig. 2).

For all ðw;k;σÞ where k� 1 ðmod wÞ (including when 
k¼1), the minimum density exactly matches our lower 
bound gσðw;kÞ. Additionally, when σ ¼ 2 and w¼2, the 
minimum density was equal to g0σðw;kÞ.

Comparison against existing schemes for large k. Using a 
sequence of 10 million random characters over alphabet size 
σ¼ 4, we approximated the density of recent sampling 
schemes using the benchmarking implementation from Groot 
Koerkamp and Pibiri (2024). To compare each density to the 
particular proportion of selected k-mers on a genomic se
quence, we also ran all sampling schemes on the human Y 
chromosome (Rhie et al. 2023) after removing all non-ACTG 
characters. The densities of the best performing methods, 
Miniception (Zheng et al. 2020), double decycling-set-based 
minimizers (Pellow et al. 2023), and mod-minimizers (Groot 
Koerkamp and Pibiri 2024) are plotted in Fig. 3 along with 
random minimizers and lower bounds.

The ratio between the minimum achieved densities and 
lower bounds for a selection of (w, k) pairs used by existing 
k-mer-based methods are presented in Table 1. Additional 
results for σ 2 f2;256g and w 2 f2;50g are provided in in 
Supplementary D, Fig. S4.

The mod-minimizer has optimal density for large σ when 
w� k ðmod 1Þ. When w and k are constant and σ ! 1, the 
probability of duplicate characters in a window goes to 0. 
This implies that we can use t¼1 for the mod-minimizer. 
When k� t ¼ 1 ðmod wÞ, the density of the mod-minimizer 
(Theorem 10 of Groot Koerkamp and Pibiri, 2024) is 
given by 

bwþk − 2
w cþ2
wþk

þoð1=‘Þ:

The oð1=‘Þ term only accounts for duplicate t-mers, and 
hence disappears when σ ! 1. We get 

bwþ k − 2
w cþ 2
wþk

¼
bkþ 3w − 2

w c

wþk
¼
dkþ 2w − 1

w e

wþk
¼

k�1 ðmod wÞ d
wþ k

w e

wþk
:

Thus, the mod-minimizer has density equal to the lower 
bound provided by Theorem 1 when σ goes to 1 and w and 
k� 1 ðmod wÞ are fixed.

In practice, for σ ¼ 256 the mod-minimizer scheme is 
within 1% from optimal when k� 1 ðmod wÞ
(Supplementary D, Fig. S4). When σ ¼ 4 (Fig. 3), a t>1 
must be used, causing the density plot to ‘shift right’ 

compared to the lower bound. Because of that, the mod- 
minimizer does not quite match the lower bound for practical 
values of σ.

5 Discussion
5.1 Conjecture on when our lower bound is tight
Analytically, it is clear that g0σðw;kÞ is much larger than 1

w. In 
all cases, g0σðw;kÞ is nearly tight, if not completely. In partic
ular, our bound is tight for all 40 tested parameter sets where 
k� 1 ðmod wÞ, leading us to our conjecture:

Conjecture 1. For any w and k satisfying k� 1 ðmod wÞ, 
there exists a (w, k)-forward sampling scheme f such 
that dðf Þ ¼ gσðw;kÞ.   

While the minimum size of a decycling set, i.e., a 
ðw¼1; ‘Þ-UHS, is well known to be Nσð‘Þ (Mykkeltveit 
1972), very little is known about the minimum size of a 
ðw; ‘Þ-UHS for finite w. In addition to providing the mini
mum density of a (w, k)-forward scheme for k� 1 ðmod wÞ, 
proving Conjecture 1 would also determine the minimum size 
of a ðw; ‘¼wþkÞ-UHS when k� 1 ðmod wÞ.

5.2 Existing schemes are nearly optimal when k ≥w 
or σ is large
A natural investigation which follows our proposed lower 
bound is to determine the gap between g0σðw;kÞ and current 
forward scheme densities. Previously, the gap between 

Figure 3. Comparison of existing schemes to lower bounds with practical 
parameters. Densities are calculated by applying each scheme to a 
random sequence of 10 million characters over an alphabet of size σ¼ 4 
(dotted lines) and are compared with the corresponding proportion of 
sampled k-mers on the human Y chromosome (Rhie et al. 2023) (soft 
lines). The mod-minimizer uses parameter r¼4, and miniception uses 
parameter maxð4;k −wÞ. The window sizes 5 and 19 are the default 
window sizes for Kraken2 (Wood et al. 2019) and minimap2 (-ax hifi) (Li 
2018), respectively. For SSHash, w¼12 was the window size used when 
indexing the human genome (Pibiri 2022).
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known densities and lower bound was rather large, making it 
unclear how much more the density could be reduced.

In Table 1, we observe that existing schemes are already 
within 11% from the optimal density for practical values of 
w and k across different applications, and in many cases are 
even within 3% of the optimal density. In Fig. 3, we see that 
this difference holds not just for the specific (w, k) in Table 1, 
but for most k≥w. This is much more informative than the 
previous lower bound of 1=w, which implied that most cur
rent schemes are at most 50% denser than optimal for many 
of the parameters in Fig. 3.

For alphabets much larger than DNA ðσ ¼ 4Þ, such as the 
ASCII alphabet (σ¼256), we observe that when 
k� 1 ðmod wÞ, the mod-minimizer scheme recently pro
posed by Groot Koerkamp and Pibiri (2024) is at most 1% 
denser than optimal and furthermore, we show that it is opti
mal as σ ! 1. This makes the mod-minimizer scheme the 
first practical scheme for which there exist finite parameters 
k and w for which it is close to optimal.

5.3 Tightening the bound for small k
Our new bound for forward schemes always improves over 
1=w and appears tight when k� 1 ðmod wÞ. This leads to an 
increasingly close bound for k 6� 1 ðmod wÞ as k increases, 
but leaves a large gap when 1<k<w. A better understanding 
of these small cases will be necessary to obtain a tight lower 
bound for all w and k. Based on Supplementary D, Figs. S3 
and S4, one might conjecture that the double decyling-set- 
based methods of Pellow et al. (2023) are near-optimal, but 
subsequent work such as the greedy minimizer (Golan et al. 
2024) has shown better schemes are possible. From Fig. 2, we 
already know that our lower bound is not always tight, so 
this leaves the question:

Open problem 1. How close can practical sampling 
schemes get to the density given by our lower bound?

5.4 Extending the bound to local schemes
For local schemes, though, our bound appears much less 
tight. We identified eight sets of ðw;k;σÞ where local schemes 
can obtain lower densities than their forward counterparts. 
In all cases, however, the difference between the local and 
forward densities was minuscule, with the largest difference 
of being found for ðw¼ 4;k¼ 2;σ ¼ 2Þ where the density de
creased from 0.375 to 0.371 (Supplementary D, Table S2). 
Nevertheless, for some parameters, local schemes are able to 
achieve densities lower than our g0σðw;kÞ lower bound for 
forward schemes. Given the trend observed in Supplementary 
D, Table S2, we arrive at our final open problem:

Open problem 2. How much lower can the density of a (w, 
k)-local scheme be compared to a (w, k)-forward scheme?
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