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Abstract

Motivation. Approximate string matching (ASM) is the problem of finding all occurrences of a pattern P in
a text T while allowing up to k errors. ASM was researched extensively around the 1990s, but with the rise
of large-scale datasets, focus shifted towards inexact approaches based on seed-chain-extend. These methods
often provide large speedups in practice, but do not guarantee finding all matches with ≤ k errors. However,
many applications, such as CRISPR off-target detection, require exhaustive results with no false negatives.
Methods. We introduce Sassy, a library and tool for ASM of short (up to ≈1000 bp) patterns in large
texts. Sassy builds on earlier tools that use Myers’ bitpacking, such as Edlib. Algorithmically, the two main
novelties are to split each sequence into 4 parts that are searched in parallel, and to use bitvectors in the text
direction (horizontally) rather than the pattern direction (vertically). This allows significant speedups for
short queries, especially when k is small, as has complexity O(k⌈n/W ⌉) when searching random text, where
W = 256 is the SIMD width. Practically speaking, Sassy is the only recent index-free tool that is designed
specifically for ASM, rather than the more common semi-global alignment. In addition, Sassy supports the
IUPAC alphabet, which is essential for primer design and for matching ambiguous bases in assemblies.
Separately, we also introduce the concept of overhang cost: a variant of ’overlap’ alignment where e.g. a
suffix of the pattern is matched against a prefix of the text, where each character of the pattern that extends
beyond the text incurs a cost of e.g. α = 0.5. This is important when matches are near contig or read ends.
Results. Compared to Edlib, Sassy is 4× to 15× faster for sequences up to length 1000, and has throughputs
exceeding 2 GB/s, whereas Edlib remains below 130 MB/s. Likewise, Sassy is up to 10× faster than parasail
when searching short strings. Sassy is also readily applicable to biological problems such as CRISPR off-target
detection. When searching 61 guide sequences in a human genome, Sassy is 100× faster than SWOffinder
and only slightly slower (for k ≤ 3) than CHOPOFF, for which building its index takes 20 minutes. Sassy
also scales well to larger k ∈ {4, 5}, unlike CHOPOFF whose index took over 10 hours to build.
Availibility. Sassy is available as Rust library and binary at https://github.com/RagnarGrootKoerkamp/sassy.

Key words: Approximate string matching, pattern matching, fuzzy string searching, semi-global alignment, edit
distance, bitpacking, SIMD, DNA

1. Introduction
Approximate string matching (ASM) is the problem of finding
all matches of a pattern P of length m in a text T of length n

with at most k errors [Navarro, 2001]. In this paper, we consider
errors under the unit-cost edit distance, also known as Levenshtein
distance [Levenshtein et al., 1966]. ASM has applications in many
different fields. Specifically in bioinformatics, instances of ASM are
CRISPR off-target detection [Yaish et al., 2024, Roux et al., 2025]
and searching barcodes for demultiplexing [Cheng et al., 2024].

Recent years have seen a large number of papers on speeding
up the related problem of global alignment by using faster
implementations (bitpacking, SIMD), faster algorithms (A*), and
better banding heuristics. Simultaneously, there is a lot of research
on mapping: aligning, say, 1 Kbp reads against static text indices
that can range from megabases to gigabases in size, without

the guarantee of finding all matches. We identify that there
is an unfilled niche of a modern, SIMD-based tool for ASM.
Sassy (SIMD Approximate String Searcher)1 fills this gap.

1.1. Contributions
Sassy is a conceptually simple but highly efficient command line
tool and Rust library for approximate string matching. Sassy
targets patterns with length up to around a thousand characters.
It supports both ASCII and (IUPAC) DNA sequences and comes
with C and Python bindings. The underlying algorithm is online
and does not require a text index. This makes it especially suitable
for e.g. searching a pattern while streaming DNA reads, one-off
searches in assembled genomes, and reference-free analysis.

1 Or, as anagram: Searching Short DNA Strings in the 2020s.
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On a high level, our main contributions are:

1. We argue that while similar, semi-global alignment, mapping,
and ASM are all distinct problems, and that for certain
applications, exact methods for ASM are required and
currently not available.

2. We define what it means to “report all matches”, and choose to
report only local minima by default. We note that matching
reversed inputs can give different results (Figure 2).

3. We develop an efficient implementation of ASM. Algorithmically
this has two small novelties: 1) bit-packing in the text
direction, rather than the pattern direction, and 2) intra-
sequence parallellism by splitting the text into 4 chunks that
are processed in parallel using W = 256 bit SIMD. This
leads to expected-case complexity O(k⌈n/W ⌉) when matching
against random text, and O(m⌈n/W ⌉) in the worst-case when
excluding the time for tracebacks.

4. We introduce an overhang cost α = 0.5 that allows and
controls the cost of overhanging alignments extending beyond
the text.

5. Sassy is 4 − 15× faster than Edlib for sequences up to length
1000 with up to 5% divergence.

6. Sassy is 100× faster than Swoffinder for CRISPR off-target
detection, and equally fast or faster than the index-based
CHOPOFF while reporting identical matches.

1.2. Previous work
ASM has been extensively studied between 1980 and 2000, mostly
concluding in the bit-packing algorithm of Myers [1999]. For
word size w = 64, this has worst-case complexity O(⌈m/w⌉n),
or expected-case complexity O(⌈k/w⌉n) on random text. Since
then, research has shifted to other types of pairwise alignment.
Indeed, both global alignment and mapping are very active
areas of research on similar but slightly different problems. Some
methods developed for those problems can also be applied to ASM.
Unfortunately, they usually do not guarantee to return all matches,
either because they only return best matches, as in semi-global
alignment, or because of their heuristic nature in case of mappers.
Before discussing the older results on ASM itself in detail, we first
cover some recent work on these related problems, so that the
differences can be appreciated.

Global alignment. In global alignment, the pattern P is aligned
against the entire text T . The lengths m := |P | and n := |T | are
typically relatively close to each other, and may range from tens
to millions of bases. The classical Needleman-Wunsch [Needleman
and Wunsch, 1970] (or Wagner-Fischer/Levenshtein [Wagner and
Fischer, 1974, Levenshtein et al., 1966]) algorithm requires O(nm)

time and space, although space can be reduced to O(min(m,n))

when only the alignment trace is needed. While no worst-case
algorithm breaks the O(n2−ε) barrier under SETH [Backurs
and Indyk, 2015], many practical methods achieve sub-quadratic
performance on typical inputs. For instance, Ukkonen’s band-
doubling method [Ukkonen, 1985b] runs in O(ns) time, where
s is the edit distance, and diagonal-transition approaches Myers
[1986], Ukkonen [1985a] attain O(n + s2) both in expectation on
random texts and in practice. A recent implementation of this (for
affine costs) is in WFA [Marco-Sola et al., 2021] and its extension
BiWFA [Marco-Sola et al., 2023] with reduced memory usage.
Another key technique in accelerating global alignment is bit-
packing, pioneered by Myers in 1999 [Myers, 1999]. Rather than
processing each DP cell individually, cost differences can be stored

in word-size w = 64 bit vectors, allowing the processing of 64 DP
states at once. This reduced the time complexity to O(n⌈m/w⌉), or
O(n⌈s/w⌉) with banding. This bit-packing is implemented in the
commonly used tool Edlib [Šošić and Šikić, 2017]. Modern CPUs
can process more than 64 bits in SIMD registers (e.g. 256 bits for
avx2). To effectively use parallelization, the DP matrix is often
broken into smaller regions [Farrar, 2006, Wozniak, 1997, Liu and
Steinegger, 2021], allowing parallel processing such as in KSW2
Li [2018], Suzuki and Kasahara [2018], BSAlign [Zhang et al.,
2019], and SeqMatcher [Espinosa et al., 2024]. Additionally, unlike
for ASM, heuristics such as X-drop can be employed to reduce
the search space [Altschul et al., 1990, Suzuki and Kasahara,
2018, Liu and Steinegger, 2021, Walia et al., 2024, Doblas et al.,
2025], while losing the guarantee that the best alignment is found.
A*PA and A*PA2 instead bound the search region by using A*,
and retaining the guarantee that an optimal alignment is found
[Groot Koerkamp and Ivanov, 2024, Groot Koerkamp, 2024].

Semi-global alignment. In semi-global alignment, a pattern P is
aligned to a substring of a longer text T , and gaps at the start and
end of T do not incur a penalty. Like in global alignment, only the
alignment(s) with the lowest number of errors are reported. Semi-
global alignment can either be between a short pattern and a much
longer text (m ≪ n, e.g. searching a read in a reference genome),
or between two sequences of similar length (m ≈ n, e.g. refining
a mapped read). This approach was first introduced by Sellers
[1979, 1980], and later termed semi-global2 by Gotoh [1999], who
also termed global alignment. It is implemented in tools such as
Parasail [Daily, 2016], SeqAn [Reinert et al., 2017], Edlib [Šošić
and Šikić, 2017], and more recently Ish [Stadick, 2025]. When
m ≈ n, semi-global alignment can benefit from adaptive banding
methods as developed for global alignment, but this is not the case
when m ≪ n. There, some methods (parasail, Seqan, Ish) simply
compute the entire O(mn) DP matrix, while others (Edlib, Sassy)
often only compute the top O(k) rows [Myers, 1999]. Thus, these
two regimes lead to completely different algorithms.

Cost models. A cost model defines what constitutes an error
and the cost associated to each error. This concept originated
in the early 1900s with systems designed to detect misspelled
names by sound [Odell and Russell, 1918]. In the 1950s, Hamming
distance was introduced for binary codes, measuring the number
of differing bit positions [Hamming, 1950], or in the context of
DNA, the number of mismatches between two equal-length strings.
Around a decade later, the Levenshtein distance was formalized
[Damerau, 1964, Levenshtein et al., 1966], that allows insertions
and deletions alongside substitutions. Importantly, Levenshtein
distance uses a unit cost model, assigning a cost of 1 to each edit,
making it computationally efficient. However, this assumption is
unrealistic for large insertions or deletions, as deleting or inserting
long segments often represents a single biological event. This led
to the development of gap-affine models, where gap opening and
extension have different costs [Gotoh, 1982, Altschul and Erickson,
1986, Marco-Sola et al., 2021]. For Sassy, we use unit-cost edit
distance for its computational efficiency and the assumption that
long indels are rare when aligning relatively short patterns.

2 Confusingly, the term semi-global is sometimes also used for
different variants of alignment. Parasail [Daily, 2016] uses it for
all types of alignment that are not exactly global alignment, while
[Suzuki and Kasahara, 2018] uses it for extension alignment where
the pattern has to match at the start of the text.
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Approximate string matching. As mentioned before, the goal
of ASM is to find all matches of a pattern P in a text T with
≤ k errors [Galil and Giancarlo, 1988, Navarro, 2001]. The key
distinction from semi-global alignment is that not just the single
best match should be reported, but that all matches with ≤ k

errors should be reported. We first discuss online (streaming)
algorithms, where the text is not known in advance, as opposed to
offline algorithms that build an index on T . Moreover, we focus
on the k-difference variant that uses edit distance rather than the
k-mismatch variant that uses Hamming distance [Chhabra et al.,
2025, Fiori et al., 2021, Gottlieb and Reinert, 2025].

Searching exact matches of patterns became popular through
algorithms such as Knuth-Morris-Pratt [Knuth et al., 1977] and
Boyer-Moore [Boyer and Moore, 1977]. With the development
of different cost models in the 1980s, algorithms were created
to detect inexact matches with k errors. Initially, approximate
string matching described comparison of two strings [Ukkonen,
1983, Hall and Dowling, 1980], but later also described searching
for a pattern as a substring of a text with ≤ k errors [Landau and
Vishkin, 1985]. Sellers proposed an O(mn) time algorithm [Sellers,
1980], which was improved to O(m2 + k2n) [Landau and Vishkin,
1985], and then O(kn) [Ukkonen, 1985a]. The introduction of bit-
parallelism [Baeza-Yates and Gonnet, 1992] led to complexities
involving the word size w, such as O(k⌈m/w⌉n) [Wu and Manber,
1992] in the famous agrep tool, O(mn log(σ)/w) [Wright, 1994],
and eventually O(⌈m/w⌉n) in Myers’ algorithm [Myers, 1999].
Later optimizations targeted specific scenarios: short patterns or
small k [Baeza-Yates and Navarro, 1999, Navarro and Baeza-Yates,
1999, Bille, 2011], fixed pattern lengths [Iliopoulos et al., 2001, Ho
et al., 2017], and periodic texts [Cole and Hariharan, 2002]. Some
were optimized for multi-pattern search [Muth and Manber, 1996,
Baeza-Yates and Navarro, 1997], though here we focus on a single
pattern.

Additionally, many offline algorithms leverage text pre-
processing and indexing, such as text compression [Mäkinen et al.,
2003, Kärkkäinen et al., 2000], suffix arrays [Landau and Vishkin,
1986, Manber and Myers, 1993, Huynh et al., 2004], and suffix trees
[Ukkonen, 1993]. Others use pre-filtering with n-grams [Owolabi
and McGregor, 1988, Jokinen and Ukkonen, 1991, Ukkonen, 1992,
Sutinen and Tarhio, 1995, Bingmann et al., 2019], inexact hashing
[Yao et al., 2010, McCauley, 2021], heuristics [Koehn and Senellart,
2010, Salmela et al., 2009], or search schemes on top of a birectional
FM-index [Renders et al., 2022, 2024]. Such offline methods thus
implement completely different algorithms than we focus on in this
paper, and are suitable for different applications.

SIMD parallellism. Overall, the complexity of index-free
methods did not improve beyond Myers’ O(⌈m/w⌉n). Practical
speedups emerged with larger SIMD word sizes with W = 256 or
W = 512 bits. Improvements then involved optimal utilization
of W . For example, BGSA [Zhang et al., 2019] uses inter-
sequence parallelism to compare multiple sequences to the same
pattern, since intra-sequence parallelism is limited when m ≤ W

[Zhang et al., 2019]. An alternative approach is taken by A*PA2
[Groot Koerkamp, 2024], where the dependency between SIMD
lanes is broken by tiling them diagonally. Yet another approach
is taken by SeqMatcher [Espinosa et al., 2024], where AVX512
instructions are used to effectively use 512-bit integers. In contrast,
Sassy splits the text into 4 chunks that are processed in parallel,
somewhat similar to Farrar’s striped method [Farrar, 2006] and
as also used by SimdMinimizers [Groot Koerkamp and Martayan,

2025], for a complexity of O(m⌈n/W ⌉). This way, intra-sequence
parallelism is maximized.

Mapping. In modern applications, the text is often an assembled
genome of many gigabases, and the number of patterns (reads) to
be searched is very large. This means that index-free methods are
infeasible, and in practice, mappers drop the guarantee to find
all matches in favour of speed. Thus, we consider mapping to be
approximate3 ASM.

In the 1980s, with increasing sequence availability and the
release of GenBank [Bilofsky et al., 1986] previous exact methods
were no longer fast enough. Early mapping methods performed
exact substring matches between the pattern P and database
sequences, beginning with Wilbur and Lipman [1983] and followed
by others using similar approaches [Lipman and Pearson, 1985,
Ning et al., 2001, Wu and Watanabe, 2005] such as BLAST
[Altschul et al., 1990].

Some methods controlled sensitivity based on the pigeonhole
principle [Weese et al., 2012], while others tried to identify similar
regions between P and the database sequences through spaced
seeds [Ma et al., 2002, Rumble et al., 2009] or locality-sensitive
hashing [Buhler, 2001]. As sequences got longer, also the number
of seeds increased, leading to algorithms that reduced the number
of seeds being stored, such as minimizers (e.g. Minimap2) [Li,
2018, Jain et al., 2020], strobemers (e.g. StrobeAlign) [Tolstoganov
et al., 2024], or by hashing subsequences instead of substrings (e.g.
SubseqHash2) [Li et al., 2024].

However, in benchmarks these mappers do not detect all
mapping locations: they can achieve over 99% sensitivity but not
full coverage [Banović Ðeri et al., 2024], and their performance
heavily depends on parameter settings such as the seed length
[Oliva et al., 2021].

Biological applications of ASM. The earliest methods for ASM,
developed in the 1980s, proved directly useful for biological
problems. For example, Myers [1986] used ASM to find a 16-
nucleotide binding site of the LexA protein in a 48 kb virus
genome. Today, ASM supports diverse applications, including read
demultiplexing [Cheng et al., 2024], genome polishing [Tonkin-Hill
et al., 2020], and CRISPR off-target searching [Chaudhari et al.,
2020].

We focus on the latter due to its clinical relevance. CRISPR
and its associated Cas proteins form an adaptive immune system
in bacteria and archaea, evolved to defend against foreign nucleic
acids such as bacteriophage and plasmid DNA [Mojica et al., 2009].
In this system, foreign DNA is precisely cut using a template called
single guide RNA (sgRNA). When the target DNA is flanked by
a protospacer adjacent motif (PAM) — for example, 5’-NGG-3’
in Streptococcus pyogenes — the CRISPR-Cas complex binds and
cleaves the DNA, thereby neutralizing the invader. By modifying
the sgRNA sequence, the CRISPR-Cas system can be programmed
to cut virtually any DNA sequence. This technology has been
applied to treat genetic diseases [Ledford, 2019], enhance crop
traits [Jaganathan et al., 2018], and engineer microorganisms
[Shapiro et al., 2018]. For an in-depth review, see Koonin and
Makarova [2019]. Notably, on May 15th, 2025, CRISPR was used
for the first time as a personalized treatment for a baby with

3 ASM is approximate in the sense that matches are allowed up
to k errors. Mapping is approximate in the sense that it is an
approximate algorithm that does not guarantee to find all such
matches.
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carbamoyl phosphate synthetase 1 (CPS1) deficiency, a rare and
life-threatening condition [Musunuru et al., 2025].

When CRISPR is engineered to target a specific sequence it is
crucial that no other, unintended sequences are cut. This is called
off-target cutting. Hence, computational tools to screen for such
off-target sites have been developped. These include Cas-OFFinder
[Bae et al., 2014], CRISPRitz [Cancellieri et al., 2020], SWOffinder
[Yaish et al., 2024], and CHOPOFF [Labun et al., 2025], with the
latter two representing the current state-of-the-art.

While CHOPOFF is much faster than SWOffinder, it requires a
time-consuming step of building an index before searching. Given
that human genetic variation affects off-target profiles [Scott and
Zhang, 2017], we argue that with the advancement of personalized
CRISPR therapies, there is a need for fast, index-free tools that
are user friendly and robust to ambiguous bases.

2. Methods
We now describe our tool, Sassy. We start with some brief
notation. Throughout the paper, we assume that we are given a
pattern P of length m := |P |, and a text T = t0 . . . tn−1 of length
n := |T |, which are both strings over an alphabet Σ of size σ := |Σ|.
We write T [i . . . j] := ti . . . tj−1 for a right-exclusive substring of
T , and we use d(P, T [i . . . j]) for the edit distance between P and
T [i . . . j]. We write rev(T ) := tn−1 . . . t1t0 for the reverse of T ,
and for DNA sequences, we define the complement comp(T ) as the
sequence where each base is replaced by its complement (A ↔ T
and C ↔ G, extended to IUPAC as well). The reverse complement
is then rc(T ) := rev(comp(T )).

2.1. Approximate String Matching
We define approximate string matching following Navarro [2001],
but restrict ourselves to edit distance only.

Definition 1 (Approximate String Matching, ASM.) Let P be a
pattern of length m := |P |, and let T be a text of length n := |T |.
Further, let k ∈ N≥0 be the maximum number of errors allowed.
The problem of approximate string matching, search(P, T, k), is to
find all end positions j ∈ {0, . . . , n} in the text such that there
exists an i ∈ {0, . . . , j} such that the edit distance d(P, T [i . . . j])

between P and T [i . . . j] is at most k.

What is a match? As defined above, a match is a position j in
the text where an alignment of cost ≤ k ends. In practice, one
might rather care about all substrings of T that have edit distance
≤ k to the pattern, i.e., all tuples (i, j) such that d(P, T [i . . . j]) ≤ k

[Sellers, 1980, Definition 1]. Or, even more exhaustively, one could
consider all alignments of P to substrings of T , where an alignment
is a specific sequence of edits transforming P into T [i . . . j].

In Sassy, we choose the first option: we find all end positions,
and then do a single traceback for each of them.

When do we have a match? In practice, one is usually not quite
interested in all matches. In particular, if there is an exact match
ending in position j, all positions in j− k to j+ k will have a cost
≤ k (see Figure 2). Thus, there are numerous options for which
matches to report:

1. All. Report (matches ending in) all end positions with cost
≤ k.

2. Single best. Report only a single best end position (if ≤ k).
Supported by Seqan.

3. All best. Report all positions where a match of globally optimal
cost ends (if ≤ k) as done in semi-global alignment as defined
by Sellers [1980] and supported by Edlib and Seqan.

4. Non-overlapping. Report only end positions that are at least
(roughly) m apart.

In Sassy, we take a different approach, that we argue is more
principled:

5. Local minima. Report only rightmost local minima ≤ k.

This is similar to the idea of Sellers [1980] to report all substrings
T [i . . . j] that can not be shrunk nor grown into a substring with
lower edit distance, with the difference that we only report end
positions, and that we only report a single match for each plateau
of local minima.

ASM is not reverse-invariant. We note here that when reporting
end positions, it is typically hard to guarantee that the matches
reported by search(P, T, k) are in one-to-one correspondence with
those reported by search(rev(P ), rev(T ), k), since the number of
(local/global minima) end positions ≤ k can differ in the forward
and reverse case, as exemplified in Figure 2. Reporting all
substrings T [i . . . j] would avoid this.

Sassy is invariant to reverse complements: when enabled, we
search P in T and rc(T )4, so that both searches are in the natural
direction of the text. Searching rc(P ) in T would instead change
the set of matches if the reverse-complement was taken of both P

and T .
Traceback. Given the set of end positions that define a match,

we can run a traceback from each of them to obtain both
the position in the text where the match starts, and the full
corresponding alignment. Sassy simply recomputes the part of the
DP matrix preceding each end position and traces back through
that.

2.2. Bitpacking and SIMD tiling
Figure 1 shows how Sassy applies both Myers’ bitpacking [Myers,
1999] and SIMD. Using bitpacking, a block of w = 64 states of the
DP matrix can be computed in parallel. Whereas other methods
typically tile these bitvectors in the direction of the pattern, we tile
them in the direction of the text. Algorithm 1 shows corresponding
pseudocode of the main search function of Sassy.

SIMD. We use 256 bit AVX2 SIMD instructions to compute 4
lanes of 64 bit words in parallel. We avoid dependency between
SIMD lanes by splitting the text into 4 chunks of ⌈n/256⌉ blocks
each. Each lane then processes one chunk: we iterate over the 64
character blocks of each chunk, and then for each block, compute
the m rows of the matrix.

As with Farrar’s striped method [Farrar, 2006], there may be
some “patching up” to do when a good alignment crosses the
boundary between two chunks. In our case, we extend each chunk
to the right (overlapping with the next chunk) as long as there
is a partial alignment of cost ≤ k that started inside the original
chunk. Especially when the text is long (so that ⌈n/W ⌉ ≈ n/W ),
this intra-sequence parallellism is near-optimal.

4 As an implementation detail, we actually search comp(P )

against rev(T ), so that we can avoid taking the complement of
T . Invariance under complements is trivial.
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Fig. 1: The tiling strategy used by Sassy. The text is first split into word-size blocks of 64 bases. Then, the list of blocks is split into 4 chunks that are
processed in parallel, with one SIMD lane per chunk. The text is implicitly padded as needed. Within a chunk, filling the matrix proceeds block-by-block.
For each block, all (up to, see Section 2.3 and Figure 3) m = |P | rows are computed before proceeding to the next block. Each chunk is extended into
the succeeding chunk as long as there is a sufficiently good “in progress” alignment (not shown).

Fig. 2: Approximate string matching. An example of finding all occurrences
of ABB in ABAB. On the left, the forward search initializes the top and
left of the matrix (shaded in grey). Then, it shows all optimal paths to
each state. On the bottom, the final distances are highlighted, and all
optimal alignments of cost 1 are highlighted in yellow. By default, Sassy
only starts a trace in the circled 1, a rightmost local minimum. The right
figure shows the reverse alignment, where the matrix is filled from the
bottom right to the top left. Note that the set of optimal alignments is
the same, but that the number of local minima (1 vs 2) and global minima
(3 vs 2) both differ.

Fig. 3: Early break. We are only interested in entries of the DP matrix with
value ≤ k, as shown in the bold-outlined area. As soon as all entries in
a row are > k, we can stop processing that block of text, as in the first
and second block. Then, we only reach the bottom of the matrix when
matches are present, as in the third block. One exception is shown in the
fourth block: when there are states at the end of the previous block at
distance ≤ k, we must continue at least one row beyond that point. Since
we use SIMD to process 4 chunks in parallel (not shown here), in practice
we continue until the values in all 4 lanes are > k.

2.3. Early break
The complexity of computing the entire DP matrix as described
so far is O(m(⌈n/W ⌉ + m/w)), where the final +m/w accounts
for overlaps between chunks. In ASM, we only care about matches
with a cost at most k, and thus, parts of the DP matrix where
values are > k can be skipped [Ukkonen, 1983, 1985b, Myers,

Alg. 1: Pseudocode for Sassy’s main Search function, that takes as input
the pattern P of length m and text T of length n, and returns a list of
end-positions in the text where alignments of cost ≤ k end. Some of the
operations operate on SIMD registers such as [0, 0, 0, 0]. ComputeBlock applies
Myers’ bitpacking algorithm to SIMD registers. Details of Eq, AllAboveK and
FindEndPositionsAtMostK can be found in Appendix A.

1: function Search(P, T, k)
2: B ← ⌈n/(4 · 64)⌉ ▷ Number of 64bp blocks per chunk.
3: j≤k ← 0 ▷ Last row in previous block ending in a value ≤ k.
4: jmax ← 0 ▷ Last computed row in previous block.
5: v+ ← [[1, 1, 1, 1];m] ▷ Initialize list of SIMD of +1 deltas.
6: v− ← [[0, 0, 0, 0];m] ▷ Modified when α < 1 for overhang.
7: M ← [[], [], [], []] ▷ Matches (pos, cost) per lane.
8: for i ∈ {0, . . . , B + ⌈(m + k)/64⌉ − 1} do
9: imax ← i

10: h+, h− ← [0, 0, 0, 0] ▷ Deltas in current row.
11: ds, de ← [0, 0, 0, 0] ▷ Dist to start and end of each block.
12: j′≤k, j

′
max ← 0

13: for j ∈ {0, . . . ,m− 1} do
14: ds ← ds + v+[j]− v−[j]

15: for ℓ ∈ {0, 1, 2, 3} do
16: ▷ Profile determines a bitmask indicating equal chars. ◁

17: eq[ℓ]← Eq(P [j], T [B · ℓ + 64 · i . . . B · ℓ + 64 · i + 64])

18: ComputeBlock(v+[j], v−[j], h+, h−, eq) ▷ Myers bitpacking.
19: de ← de + v+[j]− v−[j]

20: if minℓ de[ℓ] ≤ k then
21: j′≤k ← j

22: j′max ← j

23: ▷ Check if all 256 values are > k. ◁

24: if j > j≤k and AllAboveK(ds, h
+, h−, k) then

25: for j′ ∈ {j + 1, . . . , jmax} do
26: v+[j′]← [1, 1, 1, 1] ▷ Reset “dirty” skipped rows.
27: v−[j′]← [0, 0, 0, 0]

28: jmax ← j′max

29: j≤k ← j′≤k

30: if i ≥ B and 64 · (i− B)− j > k then
31: Goto 35, break out of i. ▷ Done with chunk overlap.
32: Goto 8, continue with next i ▷ Early break.
33: ▷ Find (local minima) end positions with cost ≤ k. ◁

34: FindEndPositionsAtMostK(M,ds, h
+, h−, k)

35: for ℓ ∈ {1, 2, 3} do ▷ Prune duplicate matches in overlap.
36: M [ℓ]← {x ∈M [ℓ] : x ≥ B · ℓ + 64 · (imax + 1)}
37: return M

1986], as shown in Figure 3. In particular, the edit distance
between two uniform random and equal-length DNA sequences
is typically around 45% of their length, so that most of the time,
the cost of aligning a prefix of length 2 · k of the pattern already
incurs a cost > k. More formally, Chang and Lampe [1992] proved
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Fig. 4: Overhang alignment of ACBBA against BBACBAC, with overhang
cost α = 0.5. On the left, the state in row i is initialized with cost
⌊iα⌋, and a left-overhanging alignment (highlighted) is found where BBA
matches and AC extends beyond the text for a cost of ⌊2/2⌋ = 1. On the
right, the text is padded with m wildcard symbols, so that the costs on the
right side of the matrix are replicated in the bottom row. Then, for each
extended state in columns j > n, ⌊(j − n)α⌋ is added to the cost. This
finds a right-overhanging alignment where AC matches and BBA extends
beyond the text for a cost of ⌊3/2⌋ = 1.

that the number of states with cost ≤ k is O(kn) when searching
a random text.

Thus, as soon as all W columns corresponding to a SIMD vector
contain a value > k, and additionally there are no remaining states
with cost ≤ k at the end of the preceding blocks, we can stop with
the current four blocks and move on to the next.

2.4. Overhang alignments
In some applications, it is useful to not only find occurrences of the
pattern that are fully contained in the text, but also those that
extend beyond the text. For example, this is the case for reads
that may only partially contain a barcode, or in case of fragmented
assemblies [Abramova et al., 2024]. Following Abrahamson [1987],
we call these overhanging matches.

Definition 2 (Overhanging match) Given pattern P of length m

and text T of length n:

1. there is a left-overhanging match when a suffix P [l . . .m]

matches a prefix of T ,
2. there is a right-overhanging match when a prefix P [0 . . .m− l]

matches a suffix of T .

In either case, each of the l overhanging (unmatched) characters
of P incurs a cost of 0 ≤ α ≤ 1, for a total overhang cost of ⌊l ·α⌋.

Figure 4 shows an example with α = 0.5 (Sassy’s default)
with three matches of cost 1: a left-overhanging match, a non-
overhanging match, and a right-overhanging match. When α = 1,
this corresponds to semi-global alignment and ASM, whereas
α = 0 corresponds to overlap alignments.

Sassy only needs a slight modification to find overlapping
matches: the left of the DP matrix is initialized with cost ⌊iα⌋
instead of i, and on the right we extend the text with m “wildcard”
symbols, so that the costs in the right column of the matrix are
“copied” to the bottom row. Then, we manually add the overhang
cost for those extended states. In practice, we use the IUPAC
alphabet for this, and simply append N characters.

2.5. Tool
The main entrypoint of the Sassy Rust library is a function
search(pattern, text, k) that returns one match for each
rightmost local minium endpoint. It can optionally return matches
for all endpoints, and supports reverse complements. The input
can be either (case insensitive) ASCII text, simple ACGT DNA,
or more general IUPAC-encoded DNA where sequences (both the
pattern and the text) may contain bases such as N (matching
ACTG), Y (matching CT), and R (matching AG). This is handled
by selecting a profile (Appendix A.1). In case of simple DNA,
we provide a function to validate that no non-ACGT bases are
present. We provide both C and Python bindings.

We also provide a simple command line tool for searching a
sequence in all records of a Fasta file, that can be installed using
cargo install sassy –config ‘build.rustflags="-C target-cpu=native"’.
(This ensures that AVX2 instructions are used when supported by
the architecture.) Examples of commands are:

sassy search --alphabet dna --no-rc -k 0 --pattern CAT data.fa
sassy search --alphabet iupac -k 1 -f patterns.fa genome.fa.gz
sassy crispr -k 5 --guide guides.fa ref.fa

The first searches for an exact match of CAT in all records of
data.fa. The second searches each record of patterns.fa in
genome.fa.gz, while allowing up to 1 error and also searching the
reverse-complement text. The last searches each of the guides in
guides.fa against ref.fa while allowing at most 5 errors. Here,
PAM sequences must match exactly and the preceding sgRNA can
contain up to 5 errors.

Whereas the library is single-threaded, the command line tool
maintains a queue of (P, T ) tuples that are distributed (in batches)
over all threads. Further details on the implementation can be
found in Appendix A.

3. Results
We compare Sassy against Edlib [Šošić and Šikić, 2017] in
two metrics: throughput of searching random DNA sequences
without matches, and the throughput of finding and tracing
matches. Section 4 shows specific applications of Sassy. The
code and data for the benchmarks can be found in the evals
directory at https://github.com/RagnarGrootKoerkamp/sassy.
These experiments were run on an Intel Core i7-10750H with 6
cores with AVX2 support, running at a fixed frequency of 3.6 GHz
with hyperthreading disabled.

Throughput of text searching. In Figure 5, we show the
throughput of Sassy and Edlib when searching relatively short
random DNA patterns (20 ≤ m ≤ 1000) against a long random
texts (n = 105), for varying error thresholds (0 ≤ k ≤ 50 =

0.05 · 1000).
Sassy is faster across all m and all k. For queries of length 20,

Sassy reaches throughput over 2 GB/s whereas the throughput
of Edlib does not exceed 130 MB/s. Since both the pattern and
text are random, no matches occur, and the early break causes
Sassy to have complexity O(k⌊n/W ⌋). Indeed, for constant k the
throughput is constant in m, while it decreases when k = 0.05 ·m.
Edlib, on the other hand, has throughput nearly independent of k:
in nearly all cases we have k ≤ 20, so that crossing the first w = 64

rows of the DP matrix already incurs a cost > k. This matches
the complexity of O(⌈k/w⌉n).

The throughput when searching ASCII (slightly faster) or
IUPAC (slightly slower) text is within 5% compared to DNA.

https://github.com/RagnarGrootKoerkamp/sassy
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Fig. 5: Throughput of searching a random text. The pattern length m

(x-axis) ranges from 20 to 1000, and the error threshold k (line style) is
either fixed at 3 or 20, or computed as m/100 or m/20, rounded towards
the nearest integer. Only points with m > 3∗k are shown to avoid spurious
matches. All points are computed by averaging over 1000 random patterns
and texts of length n = 105, and then converting to throughput. Note
that this does not include searching the reverse-complement strand. Sassy
has up to 10× higher throughput when k is small.

Affine-cost aligners. Sassy is over 10× faster than tools
implementing affine-cost alignments. For example, Sassy needs 4.5
seconds to search a pattern of length 23 in a human genome (with
up to k = 4 errors, excluding searching the reverse-complement).
For the same task, parasail [Daily, 2016] in semi-global mode with
default cost parameters takes 53 to 69 seconds, depending on the
exact configuration (8 or 16 bit values, and SSE4.1 vs AVX2),
reporting up to 1.45 GCUPS (giga cell updates per second). Ish
[Stadick, 2025] with default parameters takes 69 seconds (SSE4.1)
to 110 seconds (AVX2). Running parasail with the same costs as
Ish takes 81 seconds to 198 seconds. These methods are slower
both because they store larger values (instead of bitpacking), and
because they compute two additional affine layers of the DP
matrix.

We propose that fast edit-distance alignments could be used to
identify candidate regions which can then be refined with affine-
cost methods.

Throughput of tracing. In Figure 6, we show the throughput of
finding matches. This includes the time to locally compute all rows
of the matrix (rather than just the top O(k) rows), the time to
recompute the matrix region containing the match, and the time
for tracing through the filled matrix. We use the same setup as in
previous experiments, and “plant” a single match at the end of the
text. We then compared the run time of the same text with and
without match.

Placing the match at the end avoids triggering the dynamic
reduction of k in Edlib: Since Edlib performs semi-global alignment
and only searches matches with the minimum edit distance, it
reduces k whenever it finds a match with cost < k. If the match
were placed earlier in the text, this reduction would confound the
measurement by timing both the tracing time and its k reduction
strategy. By placing the match at the end of the text, we largely
isolate the tracing cost from the k reduction strategy.

Fig. 6: Throughput of finding matches. When the text contains a match,
this causes a larger part of the matrix to be computed since the early break
does not trigger. Later, this part of the matrix is recomputed in full and
stored in O(m2/w) words of memory so that a traceback can be done.
To measure the total time it takes to process a match, we use the same
setup as in fig. 5 with the addition of a single copy of the pattern planted
at the end of the text. We measure the time difference with the version
without match and report the corresponding throughput.

For short patterns, Sassy is over 10× faster per match
than Edlib. For longer patterns, Sassy’s throughput goes down
quadratically as it naively computes the O(m2/w) words to fill
the part of the matrix where a match is. Edlib does not slow down
as much, likely due to O(ns) banding, but is nevertheless still
slower than Sassy for patterns up to length m ≤ 1000.

4. Application: Finding CRISPR off-targets
Finding short sequences has many important applications, with
CRISPR off-target searching being of particular recent interest
[Musunuru et al., 2025]. SWOffinder [Yaish et al., 2024] and
CHOPOFF [Labun et al., 2025] are currently among the fastest
and most accurate tools for identifying off-target sequences. We
extended Sassy with CRISPR off-target searching, enabling the
search for PAM motifs—such as the Cas9 NGG motif—preceded
by a guide RNA (gRNA) sequence [Ran et al., 2013].

4.1. Searching 61 guide RNAs in the human genome
First, we briefly summarize the algorithms used by the
benchmarked tools. SWOffinder uses Smith-Waterman alignment
to fill the entire m × n matrix, identifying all end positions with
≤ k edits. It then post-processes these alignments [Yaish et al.,
2024]. CHOPOFF takes a different approach by first indexing all
PAM locations in the target genome and storing their prefixes
i.e. the sgRNA flank. Then they precompute all the edit distance
paths, within k, through these prefixes. This allows instant lookup
of sgRNA sequences with at most k edits of previously identified
PAM sites. These indexes range from 3.2GB (k = 0) to 4.5GB
(k = 4) for the human genome. The prefix edit paths are shipped
with CHOPOFF for k ≤ 4. However, computing this for k = 5 did
not finish in 10 hours. Sassy’s algorithm is similar to its regular
search, but with an additional filter prior to traceback: when
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Sassy CHOPOFF SWOffinder

k Time Matches Time Matches Time Matches

0 0:19 62 0:18 (19:47) 62 40:21 62
1 0:20 127 0:19 (23:53) 127 42:07 155
2 0:23 1,284 0:19 (23:59) 1,284 39:54 1,411
3 0:28 32,033 0:26 (23:39) 32,033 40:34 35,434
4 0:30 405,401 2:23 (23:56) 405,401 41:38 471,395
5 0:44 4,093,387 – – 40:43 1,476,640

Table 1. Time (mm:ss) to search 61 sgRNAs in Human genome CHM13
using 16 threads, and number of matches. For CHOPOFF the time to build
the index is shown in parentheses, and was terminated after 10 hours for
k = 5. SWOffinder has different counts, because 1) forward and reverse
searches are not equivalent (see Figure 2) and 2) it applies some post-
processing, potentially “collapsing” matches for e.g. k = 5.

the user requests the PAM sequence to be unmutated, then the
traceback is only performed when the exact PAM is present.

To compare Sassy to the other off-target search tools we used
the benchmark from the CHOPOFF paper [Labun et al., 2025].
This queries 61 guide sequences with the NGG PAM against the
human genome. Experiments were run on a Intel(R) Xeon(R) Gold
6240, using 16 threads for each job. Results are in Table 1.

For large values of k, Sassy outperforms both competitors by
a wide margin. In fact, for k ≥ 4, Sassy is more than 100×
faster than SWOffinder and over 4× faster than the index-based
CHOPOFF. Notably, Sassy completes the k = 5 search in just 44s,
whereas CHOPOFF’s index building for k = 5 exceeded 10hours
(and was therefore omitted). For smaller values (k ≤ 3), Sassy and
CHOPOFF have comparable performance, with Sassy trailing by
only a few seconds. We do note that CHOPOFF is faster when there
are substantially more sgRNA queries, as most time is spent on
loading the index, which is not parallellized over multiple threads.

We note that full support for IUPAC bases, as Sassy
and CHOPOFF have, is important for this application, since
human genome assemblies may not always be fully resolved—see
Appendix B.

Thus, Sassy is an extremely fast tool that does not require
building an index, making it ideal for personalized, reference-free,
off-target screening.

5. Discussion
Sassy solves approximate string matching, and allows fast
searching for short DNA sequences without using an index. The
main algorithmic novelty is to use horizontal bitpacking of deltas,
and intra-sequence parallellism using SIMD (Figure 1), leading to
a complexity of O(k · ⌈n/W ⌉) when searching random text. This
improved complexity allows searching text at up to 2 GB/s, and
up to 15× speedup over Edlib.

Practically speaking, Sassy is a simple-to-use tool with many
applications. Since Sassy is index-free, it easily supports IUPAC
characters in both the pattern and text. It is significantly
faster than other index-free methods for searching CRISPR off-
target matches, and is being integrated into other tools such
as CRISPRapido5, which uses Sassy as a pre-filter for off-target
detection with a more fine-grained (affine-cost) cost model, and
Barbell, a work-in-progress demultiplexer.

5 https://github.com/pinellolab/crisprapido

Future work. Sassy is primarily designed to search for
short patterns (small m), and includes a quadratic O(m2/w)

component. In particular, the traceback currently recomputes a
full m2 matrix, whereas a band of width k around the diagonal
would be sufficient. Similarly, during the initial pass over the
matrix, each match induces an “upper triangle” of computed states
(Figure 3), whereas it would be possible to separate this into a
band of size k around the match and a band of size O(k) at the
top of the matrix. Furthermore, we currently do not use SIMD
to fill a traceback matrix, since intra-sequence parallellism does
not work here. Instead, the diagonally strided technique of A*PA2
[Groot Koerkamp, 2024] could be used.
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A. Implementation Notes
We now provide some more details on the functions used in
Algorithm 1.

AllAboveK(ds, h+, h−, k). This function takes as input the
distance ds to the start of 4 blocks, a threshold k, and the bit-
encoded horizontal differences in each block. It then checks if the
represented values in all blocks are > k. In practice, this function
is slightly slow, and we call it not every row (as shown in the
pseudocode), but only at most every 8 rows.

It processes each lane ℓ independently. First, we pack the bits
of h+[ℓ] and h−[ℓ] into p (using _pext_u64 available in BMI2) to
remove positions where the delta is 0 and both have an indicator
bit of 0. Then, a 1 in p indicates −1 and a 0 indicates +1 (with +1

padding at the end). We split the 64-bit value p into bytes, and
do a precomputed table lookup that gives the total delta across
the byte, and the minimum prefix sum in the byte. The we do a
rolling sum over the bytes to compute the minimum overall prefix.

FindEndPositionsAtMostK(M,ds, h+, h−, k). This function again
works lane-by-lane. Unlike AllAboveK, this function is only called
at most once per block of text, when the iteration over j reaches
the end of the pattern. Thus, it is less performance critical, and
we implement it by simply iterating through the 64 bits of the
bitmasks and keeping a rolling sum for the current score in each
column. Then, each time a value ≤ k is seen, the index of the text
and the corresponding cost are pushed to the list of matches.

A.1. Profiles
The job of a profile is to take a single character P [j] of the
pattern and a slice of 64 text characters, and determine a bitmask
Eq(P [j], T [x . . . y]) indicating which of the text characters equal
P [j] [Rognes and Seeberg, 2000].

We recommend having a look at the code, in the src/profiles
directory of the git repository. Currently we only support AVX2,
and thus, this is subject to change.

ASCII. For the ASCII profile, we implement this as follows. For
each block of text, we precompute a 256 long array of 64-bit words,
so that the mask for each ASCII (In fact, ASCII characters are
< 128, but this way we can handle any raw data.) character of
the pattern can simply be looked up. The array is filled by using
256-bit SIMD instructions to compare each byte up to 256 to both
the first 32 characters ([u8; 32] is 256 bits) and last 32 characters
of the text slice, and merging the two 32-bit values.

For efficiency, we first compute a list of all distinct bytes in the
pattern, and then only fill table rows corresponding to those bytes.

Case-insensitive ASCII. In this case, we first lowercase all text
and pattern characters before doing the equality check. This is
done by xor’ing the value of all uppercase bytes by 32.

DNA. DNA only has 4 characters, and so we precompute a
table of size 4. Each ACTG character is encoded into an integer in

{0, 1, 2, 3} by first shifting right 1 bit and then only looking at the
bottom 2 bits.

Optionally, it can first be checked that the text only contains
valid bases in ACTG. This is done by ensuring that each position
case-insensitively equals one of ACTG.

IUPAC. Here, we start by building a table that maps each
IUPAC character to a 4-bit mask indicating which subset of ACTG
it matches. Since only letters are allowed input, it is sufficient to
only consider the low 5 bits of each input character leaving 32
possible values. This automatically collapses upper and lower case
values. We would now like to use a [u8; 32] SIMD register as
a lookup table (via shuffle instructions), but unfortunately cross-
128-bit lane byte shuffles are not supported on AVX2. We work
around this: each byte only contains 4 bits of data, and thus, we
can merge them, so that byte i in a [u8; 16] contains the 4 bits of
both i (low half) and i+16 (high half). Then, we can use this as a
lookup table on the low 4 bits of each text character, and use the
5th bit to select either the low or high half of the returned byte.

From here, we proceed similar to before: we first build a list of
characters occurring in the profile. Then we encode each character
to its 4-bit representation, and find the text characters that this
“intersects” with.

B. Support for ambiguous bases
Depending on their quality, human genome assemblies can contain
over 10% ambiguous bases, as seen in GRCh38 [Nurk et al.,
2022]. In search applications with clinical implications, such as
CRISPR off-target analysis, it is crucial to report matches in
regions containing ambiguous bases (e.g., N), as these indicate
sequence uncertainty and may harbor unintended cut sites. To
evaluate tool performance in such scenarios, we searched for the
sgRNA GGAAGACACACTGGCAGAAANGG with k = 0 against a
mock sequence where the sgRNA base at position 14 (C) was
replaced by N in one version of a text, and by Y in another. Sassy
implements the IUPAC profile for CRISPR off-target searches and
returned all matches according to IUPAC base pairing. CHOPOFF
requires a user to specificy the max number of ambiguous bases (we
used –ambig-max=23) and did also return all matches. SWOffinder
does not have a command line option but a hardcoded boolean
flag (default is false) which we set to true and recompiled. It
did find the N version but not the Y version. Therefore, both
Sassy and CHOPOFF have IUPAC support, and SWOffinder only
supports N with source code modification. This result underscores
the importance of selecting tools that correctly handle ambiguous
bases in clinically relevant analyses.
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