
U-Index: A Universal Indexing Framework for
Matching Long Patterns
Lorraine A. K. Ayad #

Brunel University of London, UK

Gabriele Fici #

Dipartimento di Matematica e Informatica, Università di Palermo, Italy

Ragnar Groot Koerkamp #Ñ

ETH Zurich, Switzerland

Grigorios Loukides #

King’s College London, UK

Rob Patro #

University of Maryland, College Park, MD, USA

Giulio Ermanno Pibiri #

Ca’ Foscari University of Venice, Italy
ISTI-CNR, Pisa, Italy

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract

Motivation. Text indexing is a fundamental and well-studied problem. Classic solutions to this
problem either replace the original text with a compressed representation, e.g., the FM-index and its
variants, or keep it uncompressed but attach some redundancy – an index – to accelerate matching,
e.g., the suffix array. The former solutions thus retain excellent compressed space, but are practically
slow to construct and query. The latter approaches, instead, sacrifice space efficiency but are typically
faster; for example, the suffix array takes much more space than the text itself for commonly used
alphabets, like ASCII or DNA, but it is very fast to construct and query.

Methods. In this paper, we show that efficient text indexing can be achieved using just a small
extra space on top of the original text, provided that the query patterns are sufficiently long. More
specifically, we develop a new indexing paradigm in which a sketch of a query pattern is first matched
against a sketch of the text. Once candidate matches are retrieved, they are verified using the
original text. This paradigm is thus universal in the sense that it allows us to use any solution to
index the sketched text, like a suffix array, FM-index, or r-index.

Results. We explore both the theory and the practice of this universal framework. With an
extensive experimental analysis, we show that, surprisingly, universal indexes can be constructed
much faster than their unsketched counterparts and take a fraction of the space, as a direct
consequence of (i) having a lower bound on the length of patterns and (ii) working in sketch space.
Furthermore, these data structures have the potential of retaining or even improving query time,
because matching against the sketched text is faster and verifying candidates can be theoretically
done in constant time per occurrence (or, in practice, by short and cache-friendly scans of the text).

Finally, we discuss some important applications of this novel indexing paradigm to computational
biology. We hypothesize that such indexes will be particularly effective when the queries are
sufficiently long, and so we demonstrate applications in long-read mapping.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Applied
computing → Bioinformatics

Keywords and phrases Text Indexing, Sketching, Minimizers, Hashing

© Lorraine A. K. Ayad, Gabriele Fici, Ragnar Groot Koerkamp, Grigorios Loukides, Rob Patro, Giulio
Ermanno Pibiri, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

23rd International Symposium on Experimental Algorithms (SEA 2025).
Editors: Petra Mutzel and Nicola Prezza; Article No. 4; pp. 4:1–4:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorraine.ayad@brunel.ac.uk
https://orcid.org/0000-0003-0846-2616
mailto:gabriele.fici@unipa.it
https://orcid.org/0000-0002-3536-327X
mailto:ragnar.grootkoerkamp@inf.ethz.ch
https://curiouscoding.nl
https://orcid.org/0000-0002-2091-1237
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:rob@cs.umd.edu
https://orcid.org/0000-0001-8463-1675
mailto:giulioermanno.pibiri@unive.it
https://orcid.org/0000-0003-0724-7092
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


4:2 U-Index: A Universal Indexing Framework for Matching Long Patterns

Digital Object Identifier 10.4230/LIPIcs.SEA.2025.4

Related Version Full Version: https://arxiv.org/abs/2502.14488 [2]

Supplementary Material Software (Rust): https://github.com/u-index/u-index-rs
archived at swh:1:dir:5bf057a260e06760269627158965f4a52cd49011

Funding Gabriele Fici: Supported by MUR project PRIN 2022 APML – 20229BCXNW, funded
by the European Union -– Mission 4 “Education and Research” C2 - Investment 1.1. CUP
Master_B53D23012910006.
Ragnar Groot Koerkamp: ETH Research Grant ETH-1721-1 to Gunnar Rätsch.
Rob Patro: NIH grant award number R01HG009937, NSF award CNS-1763680 and grants 252586 and
2024342821 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community
Foundation. RP is a co-founder of Ocean Genomics, Inc.
Giulio Ermanno Pibiri: European Union’s Horizon Europe research and innovation programme
(EFRA project, Grant Agreement Number 101093026). This work was also partially supported by
DAIS – Ca’ Foscari University of Venice within the IRIDE program.
Solon P. Pissis: Supported by the PANGAIA and ALPACA projects that have received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreements No 872539 and 956229, respectively.

1 Introduction

The problem of text indexing [32], at its core, involves finding all occurrences of a given
pattern within a large body of text. Formally, the problem is as follows.

▶ Problem 1 (Text Indexing). Given a string T [0 . . n) (the “text” henceforth) of n characters
over an alphabet Σ = [0, σ), we are asked to pre-process T so that the following queries are
supported efficiently for any string P [0 . . m) (the “pattern” henceforth) and any 0 ≤ i < j ≤ n:

Locate(P, T ) determines the set L = {0 ≤ i < n − m + 1 | T [i . . i + m) = P};
Count(P, T ) returns |L|; and
Extract(i, j, T ) returns T [i . . j).

Given the importance of text indexing, numerous classic solutions have been proposed,
each with varying trade-offs between time and space efficiency. In general terms, these
solutions fall into two categories: the compressed and uncompressed approaches.

A common strategy is to replace the original text with a compressed representation (a
so-called “self-index”), utilizing data structures like the FM-index [14] or its modern variants
such as the r-index [15]. These indexes are highly space-efficient, achieving space bounds in
terms of the k-th order empirical entropy of the text, while retaining the ability to support
searches. However, this efficiency in space comes at the cost of increased complexity in both
the construction and query phases [32]. Compressed indexes typically require more time
to build, and querying can be slower compared to uncompressed counterparts due to the
additional overhead involved in decoding the compressed representation.

On the other hand, uncompressed approaches, such as the suffix array [31], do not alter
the original text but instead attach some form of redundancy – henceforth referred to as the
index – to accelerate pattern matching. These methods, while being faster in terms of query
times, often suffer from significant space inefficiency. For example, suffix arrays usually take
up much more space than the text itself, particularly for commonly used alphabets such as
ASCII or DNA [21]. This makes such structures impractical for many applications, especially
when working with very large datasets.

https://doi.org/10.4230/LIPIcs.SEA.2025.4
https://arxiv.org/abs/2502.14488
https://github.com/u-index/u-index-rs
https://archive.softwareheritage.org/swh:1:dir:5bf057a260e06760269627158965f4a52cd49011;origin=https://github.com/u-index/u-index-rs;visit=swh:1:snp:16dcc4df5f61fdb41d61d5c8525eb3908f41f3e1;anchor=swh:1:rev:ae9b48330141c4429921ca862bb5ec8791086d06


L. A. K. Ayad et al. 4:3

Our Contributions. In this paper, we focus on the latter approach of uncompressed text
indexing and aim to address its space inefficiency while retaining efficient queries. In the
following, we discuss the Locate query only, given that Count can be trivially implemented
using Locate, and Extract is done by explicitly accessing the text T . We propose a novel
approach that solves the text indexing problem using only a small amount of additional space
beyond the original text, without sacrificing the speed of query processing. This is achieved
under the assumption that the query patterns P [0 . . m) are sufficiently long, i.e., we require
that m ≥ ℓ for some fixed lower bound ℓ > 0 [3], and operate under the assumption that
n ≫ ℓ. A typical value for ℓ lies in [32, 1000]. The core idea of our approach is to transform
the text into sketch space, and to construct and use a smaller index over the sketched text to
enable queries with only small additional space. Generally speaking, a sketch is a compact
representation of an object that retains enough information for approximate matches.

We therefore introduce a four-step framework for addressing text indexing:
1. We sketch the text T , say S = Sketch(T ). The sketch S can be simply regarded as a new

shorter string over a new alphabet Σ′.
2. We then construct Index(S), an index on S, where Index is any indexing structure.
3. Each query pattern P is then sketched into Q = Sketch(P ), and Q is matched against

Index(S) to identify potential matches L′ = Locate(Q, S).
4. Candidate matches in L′ are mapped back to their positions in T , where we verify that

indeed P matches T . Thus we obtain L = Map(L′), where L = Locate(P, T ).

The universality of our framework lies in its flexibility: (i) any indexing structure, Index,
such as the FM-index or the suffix array, can be used to index the sketched text S, making
the method adaptable to a variety of text indexing techniques [31, 14, 20, 15, 27, 28]; and (ii)
any locally consistent sampling mechanism, Sketch, such as minimizers [34, 35], syncmers [11],
or bd-anchors [30], can be used to sketch S and P , making the method adaptable to a variety
of sampling techniques. We also expect that our framework, which relies on Index(S), has
competitive queries compared to the ones of Index(T ) or possibly faster when the query time
of Index(T ) is a function of n = |T |. This is merely because |S| < |T | (in practice, depending
on the sketching mechanism used, |S| could be Θ(|T |/ℓ) or Θ(|T |/(ℓ − k)) for some k = o(ℓ)).
A typical such case is when Index is the suffix array [31] and binary search will take place on
a smaller array, i.e., the suffix array of S instead of the suffix array of T .

We explore both the theoretical underpinnings and the practical implementation of this
universal framework. We demonstrate that universal indexes can be constructed significantly
faster and occupy a fraction of the space compared to their unsketched counterparts. These
space savings are a direct consequence of operating in the reduced “sketch space”. Depending
on the index used, the performance of pattern matching in sketched space can be either
faster (suffix array) or slower (FM-index). In either case, the overall query performance is
slightly slower though, due to a relatively large number of false positive matches that have
to be rejected during verification. This verification step can be performed in constant time
per occurrence (in theory) or via cache-friendly scans of the original text (in practice).

In short, the main message of our paper is the following: If we have a sufficiently large
lower bound ℓ (e.g., 32 or more), then our universal scheme typically offers substantial
improvements over any text index in construction time, construction space, and index size,
while supporting competitive query times.

Paper Organization. In Section 2, we provide the necessary notation and tools. In Section 3,
we provide an overview of previous related work. In Section 4, we present our framework, and
in Section 5, we present our experimental evaluation. We conclude this paper in Section 6.

SEA 2025



4:4 U-Index: A Universal Indexing Framework for Matching Long Patterns

2 Preliminaries

In this section, we provide useful background information to support subsequent descriptions.

2.1 Notation and Computational Model
Basic Notation. Recall that we deal with a string T [0 . . n) of length n over an alphabet
Σ = [0, σ). We assume that Σ is an integer alphabet of polynomial size in n, i.e., σ = nO(1).
A substring of T of length k > 0 is called a k-mer. Given a query pattern P [0 . . m) with
m ≥ ℓ for some lower bound ℓ > 0, the goal is to support the following operation:

Locate(P, T ) = {0 ≤ i < n − m + 1 | T [i . . i + m) = P}.

We refer to the number of occurrences of P in T , that is, |Locate(P, T )|, with Count(P, T ).

The Computational Model. We assume that we have random read-only access to T and
count the space (in number of words) occupied on top of the space occupied by T . We
assume the standard word RAM model of computation with machine words of Ω(log n) bits.

2.2 Algorithmic Toolbox
The solutions we describe in this paper rely on few, well-defined tools that we present below.

Minimizers. We use a specific class of randomized methods to sketch a string, called
minimizers [34, 35]. Minimizers are defined as the triple (k, w, h): from a window of w

consecutive k-mers of T , the leftmost smallest k-mer according to the order h is chosen as
the minimizer of the window. Since at least one k-mer must be chosen every w positions,
the fraction of sampled k-mers – defined as the density of the sampling algorithm – is always
at least 1/w. Several minimizer sampling algorithms have been proposed in the literature.
See Section 3 of [19] for a recent overview of different sampling strategies and orders that
lead to different densities. Here, however, we use the folklore random minimizer sampling,
which is as defined above and uses a pseudo-random hash function for the order h. We have
the following result.

▶ Theorem 1 (Theorem 3 from [36]). When T is a string of i.i.d. random characters and
k > (3+ε) logσ(w+1) for any ε > 0, the density of the random minimizer is 2/(w+1)+o(1/w).

We fix ℓ to be the minimum pattern length and let w = ℓ − k + 1. Each substring of
length ℓ of T therefore contains one minimizer. (In practice, we expect to have |P | ≫ ℓ and
that the sketch of P is a sequence of several minimizers.) Further, we let Mℓ,k(T ) indicate
the sorted list of positions in T of the minimizers of T . Let z = |Mℓ,k(T )| be the number of
minimizers. By Theorem 1, we have that z ≈ 2(|T | − ℓ + 1)/(ℓ − k + 2) in expectation.

Tries. Given a set X of strings over the alphabet Σ, a trie Trie(X ) is a rooted tree whose
nodes represent the prefixes of the strings in X . The edges of Trie(X ) are labeled by
letters from Σ; the prefix corresponding to node u is denoted by str(u) and is given by the
concatenation of the letters labeling the path (sequence of edges) from the root of Trie(X )
to u. The node u is called the locus of str(u). The parent-child relationship in Trie(X ) is
defined as follows: the root node is the locus of the empty string ε; and the parent u of
another node v is the locus of str(v) without the last letter. This letter is the edge label of
(u, v). The order on Σ induces an order on the edges outgoing from any node of the trie. A
node u is branching if it has at least two children and terminal if str(u) ∈ X .



L. A. K. Ayad et al. 4:5

A compacted trie is obtained from Trie(X ) by removing all nodes except the root, the
branching nodes, and the terminal nodes. A compacted trie is thus a trie where all unary
paths are collapsed into a single edge, labeled by the string obtained by concatenating all the
letters of the edges in the unary path. The compacted trie takes O(|X |) space provided that
the edge labels are implicitly represented as pointers to fragments of strings in X . Given the
lexicographic order on X along with the lengths of the longest common prefixes between any
two consecutive elements (in this order) of X , one can compute Trie(X ) in O(|X |) time [26].

Rolling Hashing. Let p be a prime number and choose r ∈ [0, p) uniformly at random. The
rolling hash value of T [i . . j] – which we term fingerprint – is defined as [25]:

ϕ(T [i . . j]) :=
j∑

k=i

T [k]rj−k mod p.

The adjective “rolling” refers to the way the hash value is updated incrementally as a
fixed-length window slides through the string T . The function ϕ allows one to compute
the fingerprint of a window just knowing the fingerprint of the previous window and the
character that is being removed/added, instead of recalculating the fingerprint from scratch.

By definition, if T [i . . i + ℓ] = T [j . . j + ℓ], then ϕ(T [i . . i + ℓ]) = ϕ(T [j . . j + ℓ]). On the
other hand, if T [i . . i + ℓ] ̸= T [j . . j + ℓ], then ϕ(T [i . . i + ℓ]) ̸= ϕ(T [j . . j + ℓ]) with probability
at least 1 − ℓ/p [10]. Since we are comparing only substrings of equal length, the number of
different possible substring comparisons is less than n3. Thus, for any constant c ≥ 1, we
can set p to be a prime larger than max(|Σ|, nc+3) to make the function ϕ perfect (i.e., no
collisions) with probability at least 1−n−c (this means with high probability). Any fingerprint
of T or P fits in one machine word, so that comparing any two fingerprints takes O(1) time.
In particular, we will use the following well-known fact.

▶ Fact 1 ([25]). For any 0 ≤ i < j < n, we have

ϕ(T [i + 1 . . j]) = (ϕ(T [0 . . j]) − rj−iϕ(T [0 . . i])) mod p.

3 Related Work

Text indexing for matching long patterns (i.e., with lengths at least ℓ for some ℓ > 0) in
the uncompressed setting has attracted some attention in the literature [9, 17, 29, 30, 3, 4].
The common idea of these approaches is to use some form of sketching, such as alphabet
sampling [9], minimizer-like anchors [17, 29, 30, 3] or their worst-case counterparts [4]. The
work of [9] chooses a subset of the alphabet and constructs a sparse suffix array only for the
suffixes starting with a letter from the chosen subalphabet. The search starts with finding
the leftmost occurrence j of a sampled letter of pattern P . Then the suffix P [j . . m) is sought
using the sparse suffix array with standard means. After that, each occurrence of the suffix
is verified against the text with the previous j letters. The work of [17] proposes a similar
approach. It first computes the set B of starting positions of the minimizers of text T and
then constructs the sparse suffix array only for the suffixes starting at the positions in B.
Upon a query pattern P , it computes the starting position j of the leftmost minimizer of
P , thus implicitly partitioning P into P [0 . . j) and P [j . . m). It then searches P [j . . m) in
the sparse suffix array, and verifies each occurrence of it using letter comparisons against
T using the previous j letters. Subsequent works [29, 30, 3] propose to also construct a
sparse suffix array for the reversed prefixes ending at the positions in B, and conceptually
link the two suffix arrays with a geometric data structure. As opposed to [9, 17], these

SEA 2025



4:6 U-Index: A Universal Indexing Framework for Matching Long Patterns

approaches [29, 30, 3] thus offer query times with theoretical guarantees. An important
practical limitation of these works is that they rely on sparse suffix sorting which is a rather
undeveloped topic in practical terms [5]. From a theory perspective, the following is known.

▶ Theorem 2 ([4]). For any string T = T [0 . . n) over an alphabet Σ = [0, σ) with σ = nO(1)

and any integer ℓ > 0, we can construct an index that occupies O(n/ℓ) extra space and reports
all Count(P, T ) occurrences of any pattern P of length |P | ≥ ℓ in T in Õ(|P | + Count(P, T ))
time. The index can be constructed in Õ(n) time and O(n/ℓ) working space.

The practical limitation of Theorem 2 is that it relies on an intricate sampling scheme
and on geometric data structures which are both unlikely to be efficient in practice [4].

Another common characteristic of the aforementioned approaches is that they are not
universal. They enhance the text with specific data structures (typically, the sparse suffix
array of the sampled suffixes and some geometric data structures) and so they also have a
specific query algorithm. The main benefit of the approach we describe in this paper is that
it can be used with (and improve) any text indexing technique [31, 14, 20, 15, 27, 28].

Other Related Work. There also exists work [22] that attempts to accelerate indexing
lookup by working in sketch space (in this case, using a prefix-free parse [6] of the text and
pattern). This approach, however, builds an index over both the original and the sketched
text, and has been explored only in the context of compressed indexes (i.e., the FM-index).

4 A Universal Indexing Framework for Matching Long Patterns

In this section, we describe a universal indexing framework for a text T of length n – referred
to as the U-index – to retrieve all occurrences of a pattern P of length m ≥ ℓ in T . Refer to
Figure 1 for an overview of the proposed framework.

Text T
Pattern Pover [0, 2τ ) String Q

Map H : M`,k 7→ [0, c)
Parameters: (`, k, τ)

Positions M`,k

Index
of SSketch

Sketch using HQueryIndex

String S

Locate(Q,S)

Map using T and M`,k (6)

Locate(P, T )

Answer (5)

(1)
(2) (3)(4)

Figure 1 The U-index framework. Steps (1) and (2) are to build the index. The steps (3)–(6) are
to query with the framework. The sketching scheme in steps (1) and (3) must be the same.

Overview. The core idea of the U-index is to sketch the text T . We use random minimizers
with parameters k and w := ℓ − k + 1 for sketching T , though any type of locally consistent
sketching mechanism may be used. We start by computing the sorted list Mℓ,k(T ) of the
minimizer positions. Let us set z := |Mℓ,k(T )|. We also consider the sequence M [0 . . z)
of the corresponding minimizer strings, such that M [i] = T [pi . . pi + k) for any position
pi ∈ Mℓ,k(T ). Let c be the number of distinct minimizers in M . We can then identify each
minimizer v ∈ M with a unique identifier (or “ID” for short, in the following) in [0, c) using a
map H : Σk → [0, c). The sketch S[0 . . z) = Sketch(T ) is the sequence of IDs S[i] := H(M [i])
for all i ∈ [0, z), which is encoded in a suitable alphabet.



L. A. K. Ayad et al. 4:7

Two remarks about the map H are in order. When k is small enough to have σk ≪ n/ℓ,
then most k-mers are likely to be minimizers and the map H can thus be completely
omitted. In what follows, we assume the case when H exists. When k is large, on the
other hand, storing each minimizer in M and the map H could take a lot of space, e.g.,
O(c(k log2(σ) + log2(c))) bits. We can reduce the k log2(σ) term of this space usage by first
hashing the minimizers using, e.g., a rolling hash function (see Section 2), and only storing
the mapping from minimizer hashes to their IDs. This reduces the space to O(c(q + log2(c)))
bits, where q is the number of bits used for each hash code, provided that q < k log2(σ).

Constructing the Index. Let Σ′ = [0, 2τ ) denote the integer alphabet that we choose to
encode S, for some input parameter τ . Further, let Index denote the chosen indexing data
structure that we apply on S. Namely, we construct the Index of S, over the alphabet Σ′,
with τ = log2 |Σ′|. Note the purpose of setting the value of τ : it lets the user control the size
of the alphabet we choose to encode S as something that lies in [2, n]. Thus, we interpret
each ⌈log2(c)⌉-bit ID S[i] as a sequence of b := ⌈⌈log2(c)⌉/τ⌉ τ -bit integers1. This is a useful
feature because some compressed full-text indexes, like the FM-index [14] or the r-index [15],
take advantage of the repetitiveness of the text T to improve its compression.

Implicit Sketched Text. Note that the Index of S may or may not require storing the
sketched text S itself. For example, the FM-index is a self-index and replaces S with its
compressed form. On the other hand, the suffix array is not a self-index and does require
S. In the latter case, we can either store S explicitly, or we can reconstruct S on-the-fly as
needed using only T , H, and Mℓ,k(T ).

To conclude, our framework assumes read-only random access to T , takes parameters ℓ,
k, and τ as input, and constructs an index on top of T that consists only of the minimizer
positions Mℓ,k(T ) (encoded using Elias-Fano [12, 13]), the minimizer-ID map H, and the
Index of S over a τ -bit alphabet.

Querying. We now describe how to compute the set L = Locate(P, T ), given a query pattern
P [0 . . m) that is sufficiently long (i.e., m ≥ ℓ).

First, P is sketched similarly to the text T , obtaining a string Q = Sketch(P ). Specifically,
its minimizer positions Mℓ,k(P ) are found. Since the pattern has length m ≥ ℓ, it has at
least one minimizer, and we indicate with α and β the position of the first and last minimizer
of P , respectively. If one of the minimizers P [pi . . pi + k) of P , for pi ∈ Mℓ,k(P ), does not
occur in the text T and hence is not assigned an ID by H, this directly implies that P does
not occur in T . Otherwise, the list of corresponding IDs is determined as H(P [pi . . pi + k)),
for all pi ∈ Mℓ,k(P ), and this is encoded into the sketched query string Q using b τ -bit
integers per minimizer.

We locate Q in S using the Index of S. Let L = ∅ be the initially empty list of occurrences.
For every position p ∈ L′ = Locate(S, Q), we first check whether p ≡ 0 (mod b). If not, the
candidate match is a false positive caused by the reduction of alphabet size. Otherwise, we
retrieve the position l := Mℓ,k(T )[p/b] and verify whether T [l − α . . l − α + m) = P in O(m)
time. If so, position (l − α) is added to L. Figure 2 illustrates an example.

1 In the unlikely event of z⌈⌈log2(c)⌉/τ⌉ > n, we can either increase τ to have z⌈⌈log2(c)⌉/τ⌉ ≤ n or
simply set S := T .

SEA 2025



4:8 U-Index: A Universal Indexing Framework for Matching Long Patterns

Figure 2 An illustration of the U-index of a text T , along with a query example. First, the
minimizers M of T are found, here of length k = 4 characters, with two of them overlapping (those
starting at positions 7 and 9). The minimizer positions Mℓ,k are stored with Elias-Fano coding.
Minimizers are hashed via H to shorter IDs. These are padded to the next multiple of τ . An index
is then built on the sketch S. To locate a pattern P , its minimizers are found and the sketch Q of
corresponding IDs is constructed. Then Q is located in S, which here gives a single match. The first
minimizer of the match in Q is located in T at position l via Mℓ,k. Lastly, the candidate match is
verified starting at position l − α in T .

Theoretical Guarantees. We now explain how to verify an occurrence at position p ∈ L′ in
O(1) time using O(z) space. Let the occurrence be S[p . . q], where q = p + |Q| − 1.

For faster querying in theory or for very long patterns in practice, we also store an array
F of fingerprints, where F [i] = ϕ(T [0 . . pi]), for all pi ∈ Mℓ,k(T ), and ϕ is the rolling hash
function; see Section 2. This array can be constructed in O(n) time and has size O(z). Recall
that ℓ is the lower bound on the length of P . Let X = {T [pi . . pi + ℓ) | pi ∈ Mℓ,k(T )} and
X R = {(T [pi − ℓ + 1 . . pi])R | pi ∈ Mℓ,k(T )}, where sR denotes the reverse of the string
s. We construct the tries T := Trie(X ) and T R := Trie(X R). We label the leaf nodes
representing the string s = T [pi . . pi + ℓ) and sR = (T [pi − ℓ + 1 . . pi])R in both tries by the
set Xs = {pi | T [pi . . pi + ℓ) = s ∧ pi ∈ Mℓ,k}. Each leaf node is also assigned a lex-rank
that is obtained via an in-order DFS traversal of the trie. We also implement an inverse
function that takes pi as input and returns the lex-rank of the leaf node that represents
s = T [pi . . pi +ℓ) in T . We implement the analogous inverse function for T R. Each branching
node u in T stores an interval whose left and right endpoints are the lex-rank of the leftmost
and rightmost leaf node, respectively, in the subtree rooted at u. This information is also
computed via a DFS traversal. We store the analogous information for the branching nodes
in T R. Since T and T R are compacted and

∑
|Xs| = z, it follows that the tries and the

inverse functions take O(z) space. Furthermore, they can be constructed in O(n) time [8].
Let us explain how these additional structures can help us verify an occurrence S[p . . q]

of Q in S in O(1) time; see Figure 3. Let l := Mℓ,k(T )[p/b] and r := Mℓ,k(T )[q/b].
Using the vector F , we compute ϕ(T [l + 1 . . r]) in O(1) time by Fact 1, because we have
F [p] = ϕ(T [0 . . l]) and F [q] = ϕ(T [0 . . r]). We also compute the fingerprint ϕ(P [α + 1 . . β])
once in O(m) time and compare the two fingerprints in O(1) time2. If they are not equal,
then (l − α) is not a valid occurrence. If they are equal, we need to check P [0 . . α] and

2 If |Mℓ,k(P )| = 1, then we always return a positive answer for this comparison.



L. A. K. Ayad et al. 4:9

l r

P

T

β m− 10 α

(P [0 . . α])R P [β . .m)

TT R

l r

l − α

uu′

0 n− 1

`

≤ ` ≤ `

Figure 3 The O(1)-time verification algorithm for occurrence l − α. After spelling the fragments
of P in the two tries once, we check if the fragments in gray match using fingerprints in O(1) time;
if so, we check if the corresponding leaf nodes are both located in the induced subtrees in O(1) time.

P [β . . m). The remaining letters on each edge cannot be more than ℓ (by the density of
the minimizers mechanism), and so the verification would cost O(ℓ) time if we did it by
letter comparisons. We can verify the edges in O(1) time using tries; see Figure 3. In a
preprocessing step, we spell P [β . . m) in T arriving at node u; and we spell (P [0 . . α])R in
T R arriving at node u′. This takes O(ℓ) time. We can then check whether r is a leaf node in
the subtree induced in T using the inverse function and the interval stored in u. We can also
check whether l is a leaf node in the subtree induced in T R using the inverse function and
the interval stored in u′. This takes O(1) time per pair (l, r). We then have that (l − α) is a
valid occurrence if and only if both leaf nodes are located in the induced subtrees.

We have thus arrived at the following result.

▶ Theorem 3 (Universal framework). Let T be a string of length n over alphabet Σ = [0, σ).
Let t(n, σ), s(n, σ), and q(m, n, σ) be, respectively, the time complexity to construct Index,
the size of Index in machine words, and the query time of Index to report all the occurrences
of a pattern of length m in T . Furthermore, let z := |Mℓ,k(T )| be the number of minimizers
of T , for some parameters ℓ, k, and let S be the string obtained from T using the framework
with a parameter τ chosen from [1, log2(n)]. Then, in O(n + t(z⌈log z/τ⌉, 2τ )) time, we can
construct an index of O(z + s(z⌈log z/τ⌉, 2τ )) size, supporting Locate(P, T ) queries for a
pattern P of length m ≥ ℓ in O(m + q(|Q|, z⌈log z/τ⌉, 2τ ) + Count(Q, S)) time, where Q is
the string obtained from P using the framework with parameters ℓ, k, τ .

Example. Let us now consider a practical instantiation of Theorem 3. Let Index be the
suffix array [31] enhanced with the longest common prefix (LCP) array [26]. We choose
τ := ⌈log2 n⌉ because the suffix array can be constructed in t(n, 2τ ) = O(n) time, for any
integer alphabet of size 2τ ≤ n, and it has size s(n, 2τ ) = O(n) [24]. Given the suffix
array, the LCP array can be constructed in O(n) time [26]. By applying Theorem 3, we
construct a string S of length z ≤ n over the alphabet [0, n). Thus, we will construct our
index of O(z + s(z, n)) = O(z) size in O(n + t(z, n)) = O(n) time. Note that, by using
minimizers [34, 35], z can be much smaller than n in practice, for a sufficiently large value of
ℓ. Specifically, we have z = nd where d ≥ 1/(ℓ − k + 1) is the density of the specific minimizer

SEA 2025



4:10 U-Index: A Universal Indexing Framework for Matching Long Patterns

scheme used. For querying, we have q(m, n, 2τ ) = O(m + log n + Count(P, T )) when LCP
information is used [31]. Thus, our query time is O(m+log z +Count(Q, S)) because m ≥ |Q|
and Count(Q, S) ≥ Count(P, T ). We stress that even if Count(Q, S) ≥ Count(P, T ), we also
have log z ≤ log n, and so beyond space savings, the resulting index can also be competitive
or faster in querying.

5 Experiments

We implemented the U-index framework in the Rust programming language. In Section 5.1,
we present the setup of the experiments that we conducted to assess the efficiency of our
implementation. In Section 5.2, we present the results of these experiments. In Section 5.3,
we present an application of our framework in mapping long reads onto a reference genome.

Our software resources are open-source and can be found at https://github.com/
u-index/u-index-rs.

Implementation Details. In our implementation, we verify each candidate occurrence using
a linear scan of P in T , hence without using any trie data structure. Even if this solution
costs O(m) time instead of the O(1)-time verification claimed by Theorem 3, this is likely to
be faster in practice because (as it is well known) traversing tries is not cache-efficient.

5.1 Setup
Hardware and Software. All experiments were run on an Intel Core i7-10750H running at
a fixed frequency of 2.6 GHz with hyperthreading disabled and cache sizes of 32 KiB (L1),
256 KiB (L2), and 12 MiB (shared L3). Code was compiled using rustc 1.85.0-nightly and
GCC 14.2.1 on Arch Linux.

Datasets. We use three textual datasets of different nature and alphabet size: (1) chro-
mosome 1 of CHM13v2.03, which contains repetitive regions and consists of 248 million
characters over the DNA alphabet (σ = 4), thus 59 MiB when each character is coded using 2
bits; (2) the 200 MiB protein sequences available from the Pizza & Chili site4 (σ = 27), or 125
MiB when each character is coded using 5 bits; and (3) the 200 MiB English collection, also
available from the Pizza & Chili site5 (σ = 239). In the following, we discuss experimental
results referring to Figure 4 (on page 11) for the DNA alphabet. The results for proteins
and English have very similar shapes and are deferred to Section B due to space constraints.

Queries. For each dataset, we test 105 positive queries that are uniformly sampled from the
text. For DNA, queries consist of 512 characters, while for the protein and English datasets,
we use queries of 128 characters.

Tested Indexes. We compare the suffix array and the FM-index, indicated with SA
and FM-index in our results, against their U-index variants, with parameters (k, ℓ) ∈
{(4, 32), (8, 64), (16, 128), (28, 256)}. For the suffix array construction, we use libsais6 [33, 23].
For the FM-index, we use the implementations in SDSL-lite (SDSL-v2) [16] and in AWRY [1].

3 https://www.ncbi.nlm.nih.gov/nuccore/NC_060925.1
4 https://pizzachili.dcc.uchile.cl/texts/protein
5 https://pizzachili.dcc.uchile.cl/texts/nlang
6 https://github.com/IlyaGrebnov/libsais

https://github.com/u-index/u-index-rs
https://github.com/u-index/u-index-rs
https://www.ncbi.nlm.nih.gov/nuccore/NC_060925.1
https://pizzachili.dcc.uchile.cl/texts/protein
https://pizzachili.dcc.uchile.cl/texts/nlang
https://github.com/IlyaGrebnov/libsais


L. A. K. Ayad et al. 4:11

Figure 4 Results on the 59 MiB of the human chromosome 1. For each data structure – except
the sparse SA – we compare its performance when constructed on the plain input text (in red, left
column of each group) versus when used with the U-index (remaining colors and columns), for
increasing values of k and ℓ. Indexes marked with -H (read, “minus H”) use minimizers themselves as
IDs, without the map H. Similarly, the indexes marked with -S omit storing the sketched input text
S and instead reconstruct it via the minimizer positions Mℓ,k(T ) and T itself. The sparse SA is only
shown with sampling (no red column) because it is otherwise equivalent to SA. The top plot shows
the space usage (size) of the final data structure in MiB, with the space for minimizer positions and
the map H shaded, and the black line indicating the space occupied by the 2-bit packed input text.
The second row shows the maximum memory usage (resident set size) during the construction, where
the shaded area is the memory usage before construction. The third row shows the construction
time (in seconds), with the time for sketching the input shaded. The bottom plot shows the query
time (in average µs per Locate query), with the time for searching in the inner index shaded.

For each index, we use the smallest τ ≥ ⌈log2 c⌉ that is supported by the index. In
practice, this means that for the suffix array and SDSL FM-index we use ⌈log2 c/8⌉ bytes to
represent each ID, so that each ID is a single character. This way, these indexes get built
on exactly z = |Mℓ,k(T )| characters. In practice, this is strictly better than using a smaller
τ and building an index on 2z or more characters. The AWRY FM-index does not support
generic alphabets, and thus we had to consistently use τ = 2 to encode the IDs as DNA bases.
We note that the AWRY FM-index uses a multi-threaded parallel construction algorithm,
while all other methods are single-threaded. Further details can be found in Section A.

Finally, we also compare against our own implementation of the sparse suffix array at
minimizer positions [17], that we call the sparse SA index in our results.

5.2 Results
Suffix Array. In all cases, the U-index variants take less space and are faster to construct
than the classic indexes. Both space and construction time tend to be at least 8× less. The
time spent searching the suffix array (bottom, shaded) goes down as the suffix array becomes

SEA 2025



4:12 U-Index: A Universal Indexing Framework for Matching Long Patterns

sparser, but the total query time goes up. This is due to the increasing number of false
positive matches in minimizer space, starting at 10 false positives per query for (k, ℓ) = (4, 32)
and going up to 100 for (k, ℓ) = (28, 256). These are caused by highly repetitive regions in
the centromere [18]. Nevertheless, the query time is usually less than 2× slower than the
classic suffix array, while the space and construction time are greatly reduced.

Omitting H. When k ∈ {16, 28}, most minimizers are unique, and the map H mapping
the minimizers to IDs has size linear in their number. This can be seen in that the shaded
area in the rightmost two columns of the top-left group is accountable for most of the space
used by the index at over 26 = 64 MiB, while the input only takes 59 MiB when encoded
using 2 bits per character. Looking at SA -H, which omits H, we see that the index is much
smaller for larger k, while the query time is unaffected. The construction time does increase
though, since the alphabet is larger and hence requires more memory. The high spike for
k = 16 seems to be caused by SA (libsais) being particularly slow for 32-bit integers.

Implicit Sketched Text. We can also omit the sketched text S and instead reconstruct it
on-the-fly, as explained in Section 4. This saves significant space when k is large (where also
H can be omitted altogether). The construction time is not affected since S is discarded
after the construction. The time spent in searching the suffix array does increase significantly
though, up to 4× (shaded), but as most of the time is spent verifying potential matches, the
total query time only goes up slightly.

FM-index. The SDSL implementation takes around 90 MiB for the plain input text, and
goes significantly below this when using the U-index7. The construction time improves as well,
almost 2× each time we double ℓ because the number of sampled positions nearly halves.

A main drawback of the SDSL implementation is its significantly larger query times
compared to all other methods, starting at 32× slower for the plain index and increasing
up to 1000× slower for ℓ = 256. We suspect this is due to the inherent complexity in the
wavelet tree data structures used to represent the Burrows-Wheeler transform of the text [7],
that has increasingly more levels as k increases and hence the number of bits τ in each k-mer
ID grows. This makes SDSL an impractical choice in this scenario or, more in general, for
applications where the final size is not a bottleneck but fast queries are the primary concern.

AWRY uses around twice as much space as SDSL, and has a similar construction time,
likely because both are limited by the internal suffix array construction. On the other hand,
query times for AWRY are significantly faster than SDSL because AWRY is optimized for
the DNA alphabet, and the U-index version with k = 4 is slightly faster than AWRY on the
plain text. However, as k and ℓ increase, both SDSL and AWRY slow down by roughly a
factor of 2 overall. For AWRY we can also omit H and this almost halves the size for large k,
but negates the previously seen speedup in construction time since S is significantly larger.

Sparse SA. Lastly, the sparse SA index takes strictly less space than the U-index variant
of the suffix array, since it stores strictly less information: only one permutation of the
minimizer positions in the original text. It is also significantly faster to query, since no
sketching is needed. Additionally, it has much fewer false positives, since comparisons are

7 For some technical reason, SDSL does not accept NULL bytes, hence minimizers must necessarily be
mapped by H in the range [1, c + 1). Thus, SDSL takes a significant amount of space for k ≥ 16.



L. A. K. Ayad et al. 4:13

made in the plain input space rather than in sketch space. The construction time is worse
than SA, however, since there is no available linear-time implementation for sparse suffix
array construction8. Nevertheless, this is still faster than constructing an FM-index.

5.3 An Example Application
To show a concrete application of our framework, we show that U-index can be used for
long-read mapping. This is the problem of aligning long DNA or RNA sequencing reads
(e.g., of length more than 1,000 base pairs) to a reference genome. Although long reads
offer significant advantages over short reads in many crucial tasks in bioinformatics, such as
genome assembly or structural variant detection, their alignment is computationally costly.

Setup. We run the following experiment. As input, we take the full human genome
(CHM13v2.0) and a prefix of 450 PacBio HiFi long reads from the HG002-rep1 dataset9.
These reads are approximately 99.9% accurate and have an average length of 16kbp.

We partition (chunk) each read into patterns of length 256, and search each of these
patterns in our index. Short leftover suffixes are ignored. Ideally, each read has then at least
one pattern that exactly matches the text, which can then be used to anchor an alignment.

Results. We build the U-index on top of the libsais suffix array in the configuration where
the sketched text S and map H are both stored. We use k = 8 and ℓ = 128, so that at
least 2 and on average 4 minimizers are sampled from every pattern. This results in 53M
minimizers, and the entire U-index is built in 12 seconds.

Out of the 450 reads, 445 have at least one matching pattern, and in total, 14 824 of the
28 243 patterns match (52%). As observed before, an issue with DNA is that it contains
many long repetitive regions. In particular, there are 160 patterns that match around 3820
times each for a total of 611k matches, while the 28k remaining patterns only match 27k in
total. Worse, there are 721M mismatches, i.e., candidate matches in sketch space that turn
out not to be matches in the genome. Verifying these candidate matches takes over 98% of
the time.

Limiting Matches. Only very few (<200) patterns have more than 10 matches, and thus we
stop searching once we hit 10 matches. Further, most patterns have relatively few mismatches,
while a few patterns have a lot of mismatches. To also avoid those negative effects, we
generally only consider the first 100 matches in sketch space. We still match 445 of 450 reads,
while the number of matched patterns goes down to 13 717. On the other hand, the number
of mismatches is now 663k (23 per query) and the number of matches is 25k (0.9 per query).

The result is a query time of 8.7µs per pattern or 550µs per read, of which 33% is
sketching the input, 18% is locating the sketch, and the remaining 48% is verification.

6 Conclusions and Future Work

In this work, we introduced the U-index – a universal framework to enhance the performance
of any off-the-shelf text index, provided that the patterns to match are sufficiently long. This
is achieved, in short, by sketching the text and using any desired index for the sketched text.

8 Indeed, our implementation is very simple and relies on sorting the minimizer positions using the Rust
sort_by function that returns the suffix associated with each position as needed.

9 Downloaded from https://downloads.pacbcloud.com/public/revio/2022Q4/HG002-rep1/.

SEA 2025

https://downloads.pacbcloud.com/public/revio/2022Q4/HG002-rep1/


4:14 U-Index: A Universal Indexing Framework for Matching Long Patterns

Intuitively, this saves resources at building time and considerably reduces the final index size,
simply because the sketched text is shorter than the input text. Our experiments indeed
confirm that the U-index has excellent performance when used in combination with the suffix
array, as it significantly improves index size and construction while not slowing down queries
too much. When paired with the FM-index, the savings are more modest but still significant.

The sparse suffix array index by Grabowski and Raniszewski [17] remains a great solution
in this regime, having a smaller size and significantly faster queries than the U-index around
suffix arrays (which have, however, faster construction time). For example, albeit somewhat
larger than the SDSL FM-index, the sparse suffix array is over 100× faster to query. However,
the benefit of the U-index framework lies in its universality and usability. We remark that
the primary objective of this work is to highlight these two important properties.

We anticipate that the U-index may be especially useful around the r-index [15] when
used on highly repetitive data, but we leave this as future work. The sparse suffix array will
by design be unable to take advantage of the underlying repetitiveness. Hence, other than
universality, another important virtue of our framework is that it preserves string similarity:
for any two highly similar texts T1 and T2, it will be the case that S1 = Sketch(T1) and
S2 = Sketch(T2) are also highly similar (e.g., assuming the sketches are based on minimizers).

In terms of theory, it would make sense to bound Count(Q, S) as a function of Count(P, T )
and the sketching parameters. Such a function would bound the number of false positives.

References
1 Tim Anderson and Travis J Wheeler. An optimized FM-index library for nucleotide

and amino acid search. Algorithms for Molecular Biology, 16(1):25, 2021. doi:10.1186/
S13015-021-00204-6.

2 Lorraine A. K. Ayad, Gabriele Fici, Ragnar Groot Koerkamp, Grigorios Loukides, Rob Patro,
Giulio Ermanno Pibiri, and Solon P. Pissis. U-index: A universal indexing framework for
matching long patterns. CoRR, abs/2502.14488, 2025. doi:10.48550/arXiv.2502.14488.

3 Lorraine A. K. Ayad, Grigorios Loukides, and Solon P. Pissis. Text indexing for long patterns:
Anchors are all you need. Proc. VLDB Endow., 16(9):2117–2131, 2023. doi:10.14778/
3598581.3598586.

4 Lorraine A. K. Ayad, Grigorios Loukides, and Solon P. Pissis. Text indexing for long patterns
using locally consistent anchors. CoRR, abs/2407.11819, 2024. doi:10.48550/arXiv.2407.
11819.

5 Lorraine A. K. Ayad, Grigorios Loukides, Solon P. Pissis, and Hilde Verbeek. Sparse suffix
and LCP array: Simple, direct, small, and fast. In José A. Soto and Andreas Wiese, editors,
LATIN 2024: Theoretical Informatics - 16th Latin American Symposium, Puerto Varas, Chile,
March 18-22, 2024, Proceedings, Part I, volume 14578 of Lecture Notes in Computer Science,
pages 162–177. Springer, 2024. doi:10.1007/978-3-031-55598-5_11.

6 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher
Mun. Prefix-free parsing for building big BWTs. Algorithms for Molecular Biology, 14(1), May
2019. doi:10.1186/s13015-019-0148-5.

7 Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Systems Research Center, 1994.

8 Panagiotis Charalampopoulos, Costas S. Iliopoulos, Chang Liu, and Solon P. Pissis. Property
suffix array with applications in indexing weighted sequences. ACM J. Exp. Algorithmics,
25:1–16, 2020. doi:10.1145/3385898.

9 Francisco Claude, Gonzalo Navarro, Hannu Peltola, Leena Salmela, and Jorma Tarhio. String
matching with alphabet sampling. J. Discrete Algorithms, 11:37–50, 2012. doi:10.1016/J.
JDA.2010.09.004.

https://doi.org/10.1186/S13015-021-00204-6
https://doi.org/10.1186/S13015-021-00204-6
https://doi.org/10.48550/arXiv.2502.14488
https://doi.org/10.14778/3598581.3598586
https://doi.org/10.14778/3598581.3598586
https://doi.org/10.48550/arXiv.2407.11819
https://doi.org/10.48550/arXiv.2407.11819
https://doi.org/10.1007/978-3-031-55598-5_11
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1145/3385898
https://doi.org/10.1016/J.JDA.2010.09.004
https://doi.org/10.1016/J.JDA.2010.09.004


L. A. K. Ayad et al. 4:15

10 Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polynomial hash
functions are reliable (extended abstract). In Werner Kuich, editor, Automata, Languages and
Programming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992,
Proceedings, volume 623 of Lecture Notes in Computer Science, pages 235–246. Springer, 1992.
doi:10.1007/3-540-55719-9_77.

11 Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
biological sequences. PeerJ, 9(e10805):1755–1771, 2021. doi:10.7717/peerj.10805.

12 Peter Elias. Efficient storage and retrieval by content and address of static files. J. ACM,
21(2):246–260, 1974. doi:10.1145/321812.321820.

13 Robert Mario Fano. On the number of bits required to implement an associative memory.
Memorandum 61, Computer Structures Group, MIT, 1971.

14 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

15 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

16 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Joachim Gudmundsson and Jyrki Katajainen,
editors, Experimental Algorithms - 13th International Symposium, SEA 2014, Copenhagen,
Denmark, June 29 - July 1, 2014. Proceedings, volume 8504 of Lecture Notes in Computer
Science, pages 326–337. Springer, 2014. doi:10.1007/978-3-319-07959-2_28.

17 Szymon Grabowski and Marcin Raniszewski. Sampled suffix array with minimizers. Softw.
Pract. Exp., 47(11):1755–1771, 2017. doi:10.1002/SPE.2481.

18 Deborah L Grady, Robert L Ratliff, Donna L Robinson, Erin C McCanlies, Julianne Meyne,
and Robert K Moyzis. Highly conserved repetitive DNA sequences are present at human
centromeres. Proceedings of the National Academy of Sciences, 89(5):1695–1699, 1992.

19 Ragnar Groot Koerkamp and Giulio Ermanno Pibiri. The mod-minimizer: A Simple and
Efficient Sampling Algorithm for Long k-mers. In Solon P. Pissis and Wing-Kin Sung, editors,
24th International Workshop on Algorithms in Bioinformatics (WABI 2024), volume 312
of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:23, Dagstuhl,
Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
WABI.2024.11.

20 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

21 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

22 Aaron Hong, Marco Oliva, Dominik Köppl, Hideo Bannai, Christina Boucher, and Travis Gagie.
Acceleration of fm-index queries through prefix-free parsing. In Djamal Belazzougui and Aïda
Ouangraoua, editors, 23rd International Workshop on Algorithms in Bioinformatics, WABI
2023, September 4-6, 2023, Houston, TX, USA, volume 273 of LIPIcs, pages 13:1–13:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.WABI.2023.13.

23 Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted longest-common-prefix
array. In Gregory Kucherov and Esko Ukkonen, editors, Combinatorial Pattern Matching,
20th Annual Symposium, CPM 2009, Lille, France, June 22-24, 2009, Proceedings, volume
5577 of Lecture Notes in Computer Science, pages 181–192. Springer, 2009. doi:10.1007/
978-3-642-02441-2_17.

24 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

25 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987. doi:10.1147/RD.312.0249.

SEA 2025

https://doi.org/10.1007/3-540-55719-9_77
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1145/321812.321820
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1002/SPE.2481
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.4230/LIPIcs.WABI.2024.11
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.4230/LIPICS.WABI.2023.13
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1147/RD.312.0249


4:16 U-Index: A Universal Indexing Framework for Matching Long Patterns

26 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Amihood Amir
and Gad M. Landau, editors, Combinatorial Pattern Matching, 12th Annual Symposium, CPM
2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, volume 2089 of Lecture Notes in Computer
Science, pages 181–192. Springer, 2001. doi:10.1007/3-540-48194-X_17.

27 Dominik Kempa and Tomasz Kociumaka. Breaking the O(n)-barrier in the construction of
compressed suffix arrays and suffix trees. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 5122–5202. SIAM, 2023. doi:10.1137/1.9781611977554.
CH187.

28 Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data
structures: Suffix arrays in optimal compressed space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 1877–1886. IEEE, 2023. doi:10.1109/FOCS57990.2023.00114.

29 Grigorios Loukides and Solon P. Pissis. Bidirectional string anchors: A new string sampling
mechanism. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual
European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), volume 204 of LIPIcs, pages 64:1–64:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.64.

30 Grigorios Loukides, Solon P. Pissis, and Michelle Sweering. Bidirectional string anchors
for improved text indexing and top-K similarity search. IEEE Trans. Knowl. Data Eng.,
35(11):11093–11111, 2023. doi:10.1109/TKDE.2022.3231780.

31 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

32 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1):2, 2007. doi:10.1145/1216370.1216372.

33 Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix array
construction. IEEE Trans. Computers, 60(10):1471–1484, 2011. doi:10.1109/TC.2010.188.

34 Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A. Yorke.
Reducing storage requirements for biological sequence comparison. Bioinform., 20(18):3363–
3369, 2004. doi:10.1093/bioinformatics/bth408.

35 Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken. Winnowing: Local
algorithms for document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan,
editors, Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, California, USA, June 9-12, 2003, pages 76–85. ACM, 2003. doi:
10.1145/872757.872770.

36 Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Improved design and analysis
of practical minimizers. Bioinform., 36(Supplement-1):i119–i127, 2020. doi:10.1093/
BIOINFORMATICS/BTAA472.

A Further Details on the Tested Indexes

In this section, we explain in more detail how each of the indexes was used.

The libsais Suffix Array. For the plain input, including for DNA, we use a τ = 8 byte
encoding. For the sketched text S, this depends on c. When log2(c) ≤ 8, we use one-byte
encoding and call the libsais function. When log2(c) ≤ 16, we use two-byte encoding and
call libsais16. For larger c, we first remap all IDs to values starting at 0, as recommended
by the library authors, and then call the function libsais_int on 32-bit input values.

https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1137/1.9781611977554.CH187
https://doi.org/10.1137/1.9781611977554.CH187
https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.4230/LIPICS.ESA.2021.64
https://doi.org/10.1109/TKDE.2022.3231780
https://doi.org/10.1137/0222058
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1093/BIOINFORMATICS/BTAA472
https://doi.org/10.1093/BIOINFORMATICS/BTAA472


L. A. K. Ayad et al. 4:17

The SDSL-lite FM-index. For the plain text, we use the Huffman-shaped wavelet tree
with default parameters, i.e., the class csa_wt<wt_huff<rrr_vector<63>>,32,64>. For the
U-index counterpart, we instead use csa_wt<wt_int<rrr_vector<63>>,32,64>, a wavelet
tree over a variable-width integer alphabet. Both these indexes use a sampling factor of 32 to
sample the suffix array. Also, for both versions we remap k-mers to IDs starting at 1 instead
of 0, since SDSL does not support input values of 0. For this reason, we do not have a -H
no-remap variant of the SDSL FM-index.

The AWRY FM-index. The AWRY FM-index only supports DNA and protein alphabets.
For consistency, we only use the DNA version. This means that we consistently use τ = 2.
Thus, IDs with log2(c) bits are encoded into ⌈log2(c)⌉ DNA characters, which are passed to
AWRY as 8-bit ACGT characters. Similarly, plain text protein and English input is encoded
into 4 underlying characters. This index also uses a suffix array sampling factor of 32.

The sparse SA. The sparse SA consists of an array of 32-bit integers indicating text posi-
tions. It is constructed using the Rust standard library Vec<u32>::sort_unstable_by_key
function that compares text indices by comparing the corresponding suffixes.

B Experimental Results on Proteins and English Datasets

Figure 5 Results on 200 MiB of protein sequences. Refer to the caption of Figure 4.

SEA 2025



4:18 U-Index: A Universal Indexing Framework for Matching Long Patterns

Figure 6 Results on 200 MiB of English text. Refer to the caption of Figure 4.


	1 Introduction
	2 Preliminaries
	2.1 Notation and Computational Model
	2.2 Algorithmic Toolbox

	3 Related Work
	4 A Universal Indexing Framework for Matching Long Patterns
	5 Experiments
	5.1 Setup
	5.2 Results
	5.3 An Example Application

	6 Conclusions and Future Work
	A Further Details on the Tested Indexes
	B Experimental Results on Proteins and English Datasets

