Some notes regarding the identity
\begin{equation} \sum_{k=0}^n \binom{2k}k \binom{2n-2k}{n-k} = 4^n \end{equation}
- Gould has two derivations:
The first, from Jensens equality, (18) in (Jensen 1902; Shijie 1303).
A second via the Chu-Vandermonde convolution:
\begin{equation} \sum_{k=0}^n \binom{x}k \binom{y}{n-k} = \binom{x+y}n \end{equation}
using \(x=y=-\frac 12\) and using the $-\frac 12$-transform:
\begin{equation} \binom{-1/2}{n} = (-1)^n\binom{2n}{n}\frac 1 {2^{2n}} \end{equation}
- Duarte and de Oliveira (2012) has a combinatorial proof.
References
Duarte, Rui, and António Guedes de Oliveira. 2012. “New Developments of an Old Identity.” https://doi.org/10.48550/ARXIV.1203.5424.
Jensen, J. L. W. V. 1902. “Sur Une Identité D’abel et Sur D’autres Formules Analogues.” Acta Mathematica 26 (0): 307–18. https://doi.org/10.1007/bf02415499.