
Results
● PA-Bench can benchmark jobs running from milliseconds to hours 

with high accuracy and reproducibility.
● It is easy to compare aligners across various dimensions.
● Runtime scaling with length on random data, for fixed error rate:

● Runtime distribution on real data across unit cost (Edlib, BiWFA, 
and A*PA2) and affine cost (BiWFA-affine and Block Aligner) 
models. Note how the relative performance of aligners can vary 
widely between different types of sequences, and that Block 
Aligner is approximate.

● Runtime comparison for increasing gap-open cost (sub=extend=1)

● PA-Bench has proven useful for rapidly testing and benchmarking 
aligners, and it has been used in practice to run the benchmarks 
for A*PA/A*PA2.

● Quick benchmark-to-plot feedback increases productivity.
● The sanity checks on the returned CIGAR have found bugs both 

during the development of A*PA, and in already published code.

Introduction
● Pairwise alignment using dynamic programming accounts for a 

significant fraction of the time spent in many bioinformatics 
pipelines, and many advancements are still being made.

● Alignment has diverse use-cases and different types of data:
○ Read-to-read, read-to-genome, and genome-to-genome 

alignment
○ Small indels, structural variation, repetitive regions.
○ Different sequencing technologies (Illumina, PacBio, ONT).

● Generally, benchmarking is hard. Most papers have ad-hoc 
benchmarks that do not fairly capture the diversity of data faced 
by users, nor guarantee a fair and stable results.

● A scalable and comprehensive benchmark suite for aligners is 
missing.

PA-Bench: A framework for benchmarking pairwise aligners

Code and references:
curiouscoding.nl/notes/pabench-poster/

Conclusion
● PA-Bench is a convenient tool that makes comparing pairwise 

aligners easy for developers and users
● Currently, PA-Bench only supports benchmarking global 

alignment of DNA sequences. Future work include semi-global, 
local, and e.g. sequence-to-graph alignment, in addition to 
continuously updated datasets.

Daniel Liu
daniel.liu02@gmail.com
@daniel_c0deb0t

Ragnar Groot Koerkamp
ragnar.grootkoerkamp@inf.ethz.ch
@curious_coding

A10

Input
PA-Bench's main input is an experiment.yaml file that allows the 
user to specify a number of parameters:
● the time and memory limit to use;
● the datasets to run on: a file, URL, or generator parameters,
● whether to compute a traceback,
● the cost model to use,
● the aligners to run.
Jobs are created from the cartesian product of these parameters.
PA-Bench can run multiple jobs in parallel and caches results, so 
that only new jobs are run when an experiment is modified.

Methods
PA-Bench is a rigorous benchmarking framework for pairwise 
alignment that:
● allows comparing existing and new methods on a wide variety of 

data;
● helps users to find the right algorithm for their data;
● provides a uniform API pa-wrapper via the Aligner trait.
● has a single binary pa-bin to call existing aligners.
The main component is a tool to orchestrate a set of jobs for 
benchmarking different aligners on different datasets.
Currently supported are:
● Parasail [Daily 2016]
● Edlib [Šošić and Šikić 2017]
● KSW2 [Li 2018, Suzuki and Kasahara 2018]
● WFA/BiWFA [Marco-Sola et. al. 2021, 2023]
● Triple Accel [Liu 2022]
● Block Aligner [Liu and Steinegger 2023]
● A*PA and A*PA2 [Groot Koerkamp and Ivanov 2024, Groot 

Koerkamp 2024]
New aligners can be added easily by implementing the trait.
Both exact and approximate methods are supported.

Output
Benchmarking is done by running one job at a time. Each job:
● is run with a fixed CPU frequency;
● is pinned to its own thread;
● is run with high priority (low niceness)
● optionally has a memory or time limit, set using rlimit.
Many statistics are collected, such as:
● Wall, system and user time usage.
● Peak and increment of memory usage.
● The CPU frequency when the job started and finished.
● Dataset characteristics like sequence lengths, edit distances, gap 

lengths.
Results are automatically verified:
● The score of the returned CIGAR must match the returned score.
● For exact methods, the score must match the optimal alignment.
● The CPU frequency at start and end must equal the set frequency.
All results (statistics and outputs) are then written to a JSON file that 
can be parsed and plotted using provided python notebooks.

PA-Bench crate dependencies


